首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M A Nieto  E Palacián 《Biochemistry》1988,27(15):5635-5640
Treatment of nucleosomal particles and isolated core-histone octamers with dimethylmaleic anhydride, but not with acetic anhydride, is accompanied by a biphasic release of the two H2A.H2B dimers, the first dimer being more easily released than the second. With both kinds of particles, 50% of histones H2A and H2B are released for modification of approximately 35% of the histone amino groups. The similar behavior of nucleosomal particles and isolated core-histone octamers is consistent with the same structure of the histone octamer in the nucleosomal particle and in the free octamer in 2 M NaCl. The described release of H2A.H2B dimers allows the preparation of nucleosomal particles deficient in one H2A.H2B dimer and of the histone hexamers H2A.H2B.(H3.H4)2. For more extensive modifications, both reagents, acetic and dimethylmaleic anhydrides, cause the dissociation of nucleosomal particles with liberation of double-stranded DNA, which suggests that lysine amino groups are involved in the binding of histones to DNA. The modified nucleosomal particles are more sensitive to ionic strength than those untreated, and the presence of salt (NaCl) increases the extent of DNA release. The histones corresponding to the liberated DNA, except H2A and H2B released with dimethylmaleic anhydride, are apparently bound to the DNA-containing particles as extra histones.  相似文献   

2.
J Jordano  F Montero  E Palacián 《Biochemistry》1984,23(19):4285-4289
We have studied the structural properties of nucleosomal particles deficient in histones H2A and H2B produced by modification of histone amino groups with dimethylmaleic anhydride [Jordano, J., Montero, F., & Palacián, E. (1984) Biochemistry (preceding paper in this issue)]. Digestion with DNase I of residual particles containing only 15% of the original H2A . H2B complement produces only discrete DNA fragments no longer than 70 nucleotides. As compared with the original nucleosomes, thermal denaturation of the residual particles shows a decrease from 140 to about 90 in the number of nucleotide base pairs per particle that melt at the highest temperature transition as well as a drop in the temperature of this transition. Circular dichroism spectra of the residual particles give ellipticity values around 275 nm, much higher than those corresponding to the control nucleosomes, which appears to indicate a loss in the compact DNA tertiary structure. When regeneration of the modified amino groups of the residual particles takes place in the presence of the complementary fraction containing histones H2A and H2B, but not in its absence, nucleosomal particles with the structural properties of the original nucleosomes are reconstituted. Therefore, the structural change observed in the residual particles can be assigned to the lack of histones H2A and H2B and not to the modified amino groups of the histones present in the residual particles. The results are consistent with the stabilization by histones H2A and H2B of a DNA length of 50-70 base pairs per nucleosome.  相似文献   

3.
Yeast nucleosomal particles: structural and transcriptional properties   总被引:2,自引:0,他引:2  
M Pi?eiro  C Puerta  E Palacián 《Biochemistry》1991,30(23):5805-5810
  相似文献   

4.
Treatment of nucleosomal particles with dimethylmaleic anhydride, a reagent for protein amino groups, is accompanied by a biphasic release of histones H2A plus H2B; one H2A.H2B dimer is more easily released than the other. This behavior allows the preparation of nucleosomal particles containing only one H2A.H2B dimer, which were complemented with 125I-labeled H2A.H2B. These reconstituted particles, which contain one labeled and one unlabeled H2A.H2B dimer, were treated with the amount of reagent needed to release one of the two H2A.H2B dimers. Radioactivity was equally distributed between residual particles and released proteins, which is consistent with equivalent binding sites in the nucleosomal particle for H2A.H2B dimers, rather than with intrinsically different sites. The asymmetric release of H2A.H2B dimers would be caused by a change in the binding site of one dimer following the release of the other. This behavior might be related to the structural dynamics of nucleosomes.  相似文献   

5.
Modification of chromatin from chicken erythrocytes with dimethylmaleic anhydride is accompanied by its solubilization and the dissociation of histones H1, H5, H2A and H2B. Histone H1 is the first to dissociate and H5 the last. After regeneration of the modified amino groups, residual chromatin preparations with different histone composition were studied by circular dichroism and thermal denaturation. In addition to the effects produced by the lack of histones H1 and H5, both techniques show a substantial relaxation of chromatin structure induced by the loss of histones H2A and H2B, which appear to play an important role in the superhelical folding of DNA.  相似文献   

6.
Nucleosomal core particles lacking one H2A.H2B dimer, (H2A.H2B)1 (H3.H4)2/DNA (146 bp), have been prepared by treatment of nucleosomal cores with dimethylmaleic anhydride, a reversible reagent for protein amino groups. The preparative procedure is simple, produces quantitative conversion of nucleosomal cores into dimer-deficient cores without formation of other subnucleosomal particles, and can be applied to the preparation of different H2A.H2B-deficient mono and oligonucleosomal particles. The structural properties of the dimer-deficient cores and complete nucleosomal cores reconstituted from the deficient particles and H2A.H2B dimers have been studied by DNase I digestion, thermal denaturation and circular dichroism.  相似文献   

7.
Summary Ribosomal 60S subunits active in polyphenylalanine synthesis can be reconstituted from core particles lacking 20–40% of the total protein. These core particles were obtained by treatment of yeast 60S subunits with dimethylmaleic anhydride, a reagent for protein amino groups. Upon reconstitution a complementary amount of split proteins is incorporated into the ribosomal particles, which have the sedimentation coefficient of the original subunits. Ribosomal protein fractions obtained by extraction with 1.25 M NH4Cl, 4 M LiCl, 7 M LiCl, or 67% acetic acid, are much less efficient in the reconstitution of active subunits from these core particles than the corresponding released fraction prepared with dimethylmaleic anhydride. Attempts to reconstitute active subunits from protein-deficient particles obtained with 1.25 M NH4Cl plus different preparations of ribosomal proteins, including the fraction released with dimethylmaleic anhydride, were unsuccessful. Therefore, under our conditions, of the disassembly procedures assayed only dimethylmaleic anhydride allows partial reconstitution of active 60S subunits.Abbreviation DMMA dimethylmaleic anhydride  相似文献   

8.
Modification with acetic anhydride of nucleosomes from chicken erythrocytes at low ionic strength (less than 0.1 M NaCl) is accompanied by the formation of residual particles and the release of free DNA. This DNA has been identified as single-stranded by thermal denaturation, digestion with nuclease S1, and elution from hydroxyapatite. In contrast, if modification takes place at 0.6 M NaCl, the liberated DNA is mainly double-stranded. The release of the free energy stored in folded nucleosomal DNA, triggered by the weakening of lysine-DNA interactions which takes place upon modification, might be responsible for the observed denaturation of DNA at low ionic strength.  相似文献   

9.
10.
The sequential arrangement of histones along DNA in nucleosomes containing all five histones and DNA about 165 and 175 base-pairs in length has been determined. The data provide evidence that core histones (H2A, H2B, H3 and H4) are arranged in nucleosomes and nucleosome core particles in a largely similar way with the following differences. (1) On nucleosomal DNA about 175 basepairs long core histones are probably shifted by 20 nucleotides on one DNA strand and by 10 nucleotides on the complementary DNA strand from the 5′ end. On nucleosomal DNA 165 base-pairs long, histones appear to be shifted by 10 nucleotides from the 5′ end of DNA on both the DNA strands. (2) Histone H3 is extended beyond core DNA and is bound to the 3′ end of DNA about 175 nucleotides long. Thus, core histones span the whole length of nucleosomal DNA. (3) Histone H2A seems to be absent from the central region of nucleosomal DNA. These results indicate that during the preparation of core particles, some rearrangement of histones or some of their regions occurs.Histone H1 has been shown to be bound mainly to the ends of nucleosomal DNA and, along the whole DNA length, to the gap regions that are free of core histones.  相似文献   

11.
The experiments on reconstruction of chromatin (without H1) from DNA and histone octamer containing either H2B from sea urchin sperm (H2B-S) or H2B from calf thymus are reported. It has been shown that H2B-S affects the mode of interaction of histones with DNA during the reconstitution of nucleosomal particles on one hand and on the other hand H2B-S plays a major role in the interactions of reconstituted mononucleosomes. These interactions result in supranucleosomal structures.  相似文献   

12.
The interaction of different histone oligomers with nucleosomes has been investigated by using nondenaturing gel electrophoresis. In the presence of 0.2 M NaCl, the addition of the pairs H2A,H2B or H3,H4 or the four core histones to nucleosome core particles produces a decrease in the intensity of the core particle band and the appearance of aggregated material at the top of the gel, indicating that all these histone oligomers are able to associate with nucleosomes. Equivalent results were obtained by using oligonucleosome core particles. Additional electrophoretic results, together with second-dimension analysis of histone composition and fluorescence and solubility studies, indicate that H2A,H2B, H3,H4, and the four core histones can migrate spontaneously from the aggregated nucleosomes containing excess histones to free core DNA. In all cases the estimated yield of histone transfer is very high. Furthermore, the results obtained from electron microscopy, solubility, and supercoiling assays demonstrate the transfer of excess histones from oligonucleosomes to free circular DNA. However, the extent of solubilization obtained in this case is lower than that observed with core DNA as histone acceptor. Our results demonstrate that nucleosome core particles can be formed in 0.2 M NaCl by the following mechanisms: (1) transfer of excess core histones from oligonucleosomes of free DNA, (2) transfer to excess H2A,H2B and H3,H4 associated separately with oligonucleosomes to free DNA, (3) transfer to excess H2A,H2B initially associated with oligonucleosomes to DNA, followed by the reaction of the resulting DNA-(H2A,H2B) complex with oligonucleosomes containing excess H3,H4, and (4) a two-step transfer reaction similar to that indicated in (3), in which excess histones H3,H4 are transferred to DNA before the reaction with oligonucleosomes containing excess H2A,H2B. The possible biological implications of these spontaneous reactions are discussed in the context of the present knowledge of the nucleosome function.  相似文献   

13.
Millard JT  Wilkes EE 《Biochemistry》2000,39(51):16046-16055
Interstrand cross-linking studies with the antitumor drug cis-diamminedichloroplatinum(II) and its clinically inactive isomer, trans-diamminedichloroplatinum(II), were performed on a fragment of the 5S rRNA gene of Xenopus borealis in the free and nucleosomal state. 5S nucleosomes were formed via histone octamer exchange from chicken erythrocyte core particles. Native polyacrylamide gel electrophoresis was used to probe the ability of platinated DNA to reconstitute into core particles. Both isomers negatively impacted reconstitution when histones were present during incubation with the drug. When histones were not present during the drug treatment, platinated DNA was successfully reconstituted into core particles. These results suggest that platination of histones impedes reconstitution of free DNA. However, already-formed core particles were not disrupted upon platination. Sites of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. We found both site-specific enhancement and depression of cis-diamminedichloroplatinum(II) cross-linking in the nucleosomal samples relative to free DNA at both drug concentrations that were tested (0.01 and 0.0025 mM). trans-Diamminedichloroplatinum(II) exhibited no detectable differences in the interstrand cross-linking of free and nucleosomal samples.  相似文献   

14.
A Stein  K Holley  J Zeliff  T Townsend 《Biochemistry》1985,24(7):1783-1790
Addition of core histones to chromatin or chromatin core particles at physiological ionic strength results in soluble nucleohistone complexes when polyglutamic acid is included in the sample. The interaction between nucleosomes and added core histones is strong enough to inhibit nucleosome formation on a closed circular DNA in the same solution. Complexes consisting of core particles and core histones run as discrete nucleoprotein particles on polyacrylamide gels. Consistent with the electrophoretic properties of these particles, protein cross-linking with dimethyl suberimidate indicates that added core histones are bound as excess octamers. Histones in the excess octamers do not exchange with nucleosomal core histones at an ionic strength of 0.1 M and can be selectively removed from core particles by incubating the complexes in a solution containing sufficient DNA. Under conditions where added histones are confined to the surface of chromatin, the excess histones are mobile and can migrate onto a contiguous extension of naked DNA and form nucleosomes.  相似文献   

15.
16.
17.
Relative accessibility of nucleosomal histones to acetic anhydride during acetylation has been studied as a function of concentration, pH and ionic strength of the solution using high-resolution gel-electrophoresis. It was shown that about 80% of lysine residues in nucleosomal histones and 100% of the same residues in histone complexes without DNA in 2 M NaCl are accessible to the modification, which is proved by the localization of the majority of lysine residues in nucleosomes near the surface of the histone octamer, by their participation in ionic interactions with DNA and, probably, in histone-histone contacts. Gel-electrophoretic experiments with nucleosomes and studies of the histone resistance to mild trypsinolysis indicated that neither nucleosomes themselves nor histone octamers are affected even though 50% of lysine residues in histones have been acetylated. The process of acetylation is accompanied by the growing tendency of histones to participate in mild trypsinolysis and by a gradual decline in electrophoretic mobility and in the value of the sedimentation constant. The circular dichroism spectra and the microscopic appearance of nucleosomes are also markedly changed. These results suggest that a gradual unfolding of nucleosomes occurs when 5 or more lysine residues in the nucleosomal histones have been acetylated.  相似文献   

18.
In this report, we introduce the use of DNA-cellulose chromatography for evaluating the strength of binding of histones to DNA under a variety of conditions. We have found that histones added directly to DNA-cellulose at physiological salt concentrations bind relatively weakly, with all histones eluting together at about 0.5 M NaCl when a salt gradient is applied. However, much tighter binding of the four nucleosomal histones to DNA-cellulose is obtained if gradual histone-DNA reconstitution conditions are used. In this case, the binding of histones H2A, H2B, H3, and H4 to DNA-cellulose closely resembles their binding to native chromatin. The nativeness of the binding is indicated both by the distinctive sodium chloride elution profile of these histones from DNA-cellulose and by their relative resistance to trypsin digestion when DNA-bound. The binding to DNA-cellulose of histones H2A, H2B, H3, and H4, which have had the first 20 to 30 amino acid residues removed from their NH2 termini, is indistinguishable from the binding to DNA-cellulose of the same intact histones, as judged by their salt elution profile. Thus, even though the NH2 termini contain 40 to 50% of the positively charged amino acid residues (thought to interact with the DNA backbone), a major contribution to the DNA binding comes from the remainder of the histone molecule. Finally, we have discovered that histones can form a "nucleosome-like" complex on single-stranded DNA. The same complex does not appear to form on RNA. Histones H3 and H4 play a predominant role in organizing this histone complex on single-stranded DNA, as they do on double-stranded DNA in normal nucleosomes. We suggest that, in the cell nucleus, nucleosomal structures may form transiently on single strands of DNA, as DNA and RNA polymerases traverse DNA packaged by histones.  相似文献   

19.
Modification of 40S ribosomal subunits from Saccharomyces cerevisiae with dimethylmaleic anhydride (DMMA), a reagent for protein amino groups, is accompanied by loss of polypeptide-synthesizing activity and by dissociation of proteins from the particles. The protein-deficient ribosomal particles, originated from 40S subunits by treatment with dimethylmaleic anhydride at a molar ratio of reagent to particle of 250, can partially reconstitute active subunits upon addition of the corresponding released proteins, and regeneration of the modified amino groups.
  相似文献   

20.
In avian erythrocyte chromatin, heparin interacts differentially with H1, H5 and the nucleosomal core histones. In non-erythroid cells, a partial extraction of H2A, H2B and H1 yields H3/H4/DNA complexes and particles of unchanged nucleosomal composition. The assay system for this heparin effect includes sucrose gradients, formaldehyde fixation and cesium chloride gradient centrifugation. A comparison of avian erythrocyte nucleosomes with chromatin subunits from precursor cells shows that H5 interferes with the heparin effect whereas a removal of H5 renders the core histones accessible to the polyanion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号