首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log(10) on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log(10). The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

2.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

3.
AIMS: Escherichia coli O157:H7 was monitored daily during sprouting of alfalfa seeds inoculated at high (3.92 log10 cfu g(-1)) and low (1.86 log10 cfu g(-1)) levels to assess the extent of pathogen growth during production. METHODS AND RESULTS: Sprouts and rinse water were tested by direct and membrane filter plating on modified sorbitol MacConkey agar and BCM O157:H7(+) agar; the antibody-direct epifluorescent filter technique; and rapid immunoassays. The pathogen reached maximum populations after one and two days of sprouting seeds inoculated at high and low levels, respectively; in either case, populations of 5-6 log10 cfu g(-1) were reached. Detection limits of two rapid immunoassays, Reveal and VIP, without enrichment were determined to be 5-7 log10 cfu ml(-1). CONCLUSION: These results show the ability of E. coli O157:H7 to grow to high levels during sprouting; however, because these levels may be below detection limits, it is necessary to include enrichment when monitoring sprout production for E. coli O157:H7 by the rapid test kits. SIGNIFICANCE AND IMPACT OF THE STUDY: The data indicate that sprouts may harbor high levels of pathogens. The appropriate use of rapid test methods for pathogen monitoring during sprouting is indicated.  相似文献   

4.
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined.  相似文献   

5.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

6.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

7.
One of the most common vehicles by which Escherichia coli O157:H7 may be introduced into crops is contaminated irrigation water. Water contamination is becoming more common in rural areas of the United States as a result of large animal operations, and up to 40% of tested drinking-water wells are contaminated with E. coli. In this study, 2 contrasting soil samples were inoculated with E. coli O157:H7 expressing green fluorescent protein through irrigation water. Real-time PCR and culture methods were used to quantify the fate of this pathogen in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non-rhizosphere soils. A real-time PCR assay was designed with the eae gene of E. coli O157:H7. The probe was incorporated into real-time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non-rhizosphere soils. The detection limit for E. coli O157:H7 quantification by real-time PCR was 1.2 x 10(3) in the rhizosphere, phyllosphere, and non-rhizosphere samples. E. coli O157:H7 concentrations were higher in the rhizosphere than in the non-rhizosphere soils and leaf surfaces, and persisted longer in clay soil. The persistence of E. coli O157:H7 in phyllosphere, rhizosphere, and non-rhizosphere soils over 45 days may play a significant part in the recontamination cycle of produce in the environment. Therefore, the rapidity of the real-time PCR assay may be a useful tool for quantification and monitoring of E. coli O157:H7 in irrigation water and on contaminated fresh produce.  相似文献   

8.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

9.
AIMS: The objective of this study was to determine the combined effects of water activity (a(w)), chemical treatment and temperature on Salmonella and Escherichia coli O157:H7 inoculated onto alfalfa seeds. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 and adjusted to various a(w) values were subjected to simultaneous and separate treatments with chemicals and heat. The rate of death of both pathogens was correlated with increased a(w) (0.15-0.60) and temperature (5-37 degrees C) over a 52-week storage period. Higher seed a(w) enhanced the inactivation of pathogens on seeds heated at 50-70 degrees C for up to 24 h. Treatment of seeds with water, 1% Ca(OH)2, 1% Tween 80, 1% Ca(OH)2 plus 1% Tween 80 or 40 mg l(-1) Tsunami 200 at 23 or 55 degrees C for 2 min significantly (alpha=0.05) reduced populations of Salmonella and E. coli O157:H7. CONCLUSIONS: Overall, at the combinations of temperature and concentrations of chemicals tested, 1% Ca(OH)2 was most effective in killing Salmonella and E. coli O157:H7 without reducing seed viability. SIGNIFICANCE AND IMPACT OF THE STUDY: None of the treatments evaluated in this study, whether applied separately or in combination, eliminated Salmonella or E. coli O157:H7 on alfalfa seeds without sacrificing the viability of the seeds. It remains essential that practices to prevent the contamination of alfalfa seeds be strictly followed in order to minimize the risk of Salmonella and E. coli O157:H7 infections associated with sprouts produced from these seeds.  相似文献   

10.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

11.
Our group has previously reported a sandwich-based strip immunoassay for rapid detection of Escherichia coli O157:H7 [Anal. Chem. 75 (2003) 4330]. In the present study, a microcapillary flow injection liposome immunoanalysis (mFILIA) system was developed for the detection of heat-killed E. coli O157:H7. A fused-silica microcapillary with anti-E. coli O157:H7 antibodies chemically immobilized on the internal surface via protein A served as an immunoreactor/immunoseparator for the mFILIA system. Liposomes tagged with anti-E. coli O157:H7 and encapsulating a fluorescent dye were used as the detectable label. In the presence of E. coli O157:H7, sandwich complexes were formed between the immobilized antibodies in the column, the sample of E. coli O157:H7 and the antibody-tagged sulforhodamine-dye-loaded liposomes. Signals generated by lysing the bound liposomes with 30 mM n-octyl-beta-D-glucopyranoside were measured by a fluorometer. The detected signal was directly proportional to the amount of E. coli O157:H7 in the test sample. The mFILIA system successfully detected as low as 360 cells/mL (equivalent to 53 heat-killed bacteria in the 150 microL of the sample solution injected). MeOH (30%) was used for the regeneration of antibody binding sites in the capillary after each measurement, which allowed the immunoreactor/immunoseparator to be used for at least 50 repeated assays. The calibration curve for heat-killed E. coli O157:H7 has a working range of 6 x 10(3)-6 x 10(7)cells, and the total assay time was less than 45 min. A coefficient of variation for triplicate measurements was < or =8.9%, which indicates an acceptable level of reproducibility for this newly developed method.  相似文献   

12.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

13.
AIMS: To evaluate the suitability of a multiplex PCR-based assay for sensitive and rapid detection of Escherichia coli O157:H7 in soil and water. METHODS AND RESULTS: Soil and water samples were spiked with E. coli O157:H7 and subjected to two stages of enrichment prior to multiplex PCR. Detection sensitivities were as high as 1 cfu ml(-1) drinking water and 2 cfu g(-1) soil. Starvation of E. coli O157:H7 for 35 d prior to addition to soil did not affect the ability of the assay to detect initial cell numbers as low as 10 cfu g(-1) soil. Use of an 8-h primary enrichment enabled detection of as few as 6 cfu g(-1) soil, and 10(4) cfu g(-1) soil with a 6-h primary enrichment. When soil was inoculated with 10(5) cfu g(-1), the PCR assay indicated persistence of E. coli O157:H7 during a 35 d incubation. However, when soil was inoculated with lower numbers of pathogen, PCR amplification signals indicated survival to be dependent on cell concentration. CONCLUSIONS: A multiplex PCR-based assay, in combination with an enrichment strategy enabled sensitive and rapid detection of E. coli O157:H7 in soil and water. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect E.coli O157:H7 in environmental material within one working day represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen.  相似文献   

14.
AIMS: The lack of baseline data on the prevalence of Escherichia coli O157:H7 in retail minced beef in France prompted this survey of industrial minced beef production. METHODS AND RESULTS: An automated enzyme-linked fluorescence immunoassay (ELFA), the VIDAS E. coli O157 method, was used to detect E. coli O157 in industrial minced beef samples. Confirmation of samples positive according to the ELFA was performed using an automated immunoconcentration (ICE) system, VIDAS ICE, which allows the selective capture and release of target organisms. The ICE was followed by culture on cefixime tellurite sorbitol MacConkey agar and a chromogenic medium, O157:H7 ID. Of the 3450 minced beef samples tested, 175 samples were positive with the ELFA method and, of these, four were confirmed by the ICE method. They were identified as sorbitol-negative, O157-positive, H7-positive, mobile, verotoxin-producing E. coli. CONCLUSIONS: The prevalence of E. coli O157:H7 in industrial French minced beef was 0.12%, consistent with many other reports. SIGNIFICANCE AND IMPACT OF THE STUDY: The low infective dose of E. coli O157:H7 presents a major threat. The main means of combating this organism are thermal destruction and good food hygiene covering activities on-farm, in the abattoir and in minced beef industries.  相似文献   

15.
A solid phase fluorescence-based immunoassay was developed for the detection of Escherichia coli O157:H7 using an antigen down competition format. A soft glass capillary tube served as the solid support, to which heat-killed E. coli O157:H7 were adsorbed. Polyclonal anti- E. coli O157:H7 antibody, conjugated with biotin, was used and the bound antigen-antibody complex was detected using avidin molecules labelled with Cy5, a fluorescent cyanine dye. Any E. coli O157:H7 in the sample would compete with the formation of this complex, reducing fluorescence. This assay was tested for sensitivity with spiked ground beef and apple cider samples. The minimum detectable number of cells present in the initial inoculum was calculated to be approximately 1 colony-forming unit (cfu) per 10g of ground beef when samples were enriched in modified EC broth for 7 h at 37°C. The minimum detectable number of cells for the apple cider samples was calculated to be ∼0.5 cfu ml-1 The E. coli cells in the cider samples were captured with immunomagnetic beads, incubated for 7 h in the enrichment broth, and detected with the solid phase fluorescence immunoassay.  相似文献   

16.
AIM: To estimate the distribution and prevalence of both Escherichia coli O157 and O157:H7-infecting bacteriophages within a 50,000 head commercial beef feedlot. METHODS AND RESULTS: Escherichia coli O157 was detected in approximately 27% of the individual samples, distributed across seven of the 10 pens screened. In a simple initial screen to detect O157:H7-infecting phages, none were detected in any pen or individual sample. In contrast, after a series of enrichment procedures O157:H7-infecting phages were detected in every pen and in the majority of the samples from most pens; virulent bacteriophages active against E. coli O157:H7 were detected post-enrichment from 39/60 (65%) of the feedlot samples, and 58/60 (approximately 97%) contained phage that infected E. coli B or O157:H7. CONCLUSIONS: The data we present here indicates that we may be grossly underestimating the prevalence of O157:H7-infecting phages in livestock if we simply screen samples and that enrichment screening is required to truly determine the presence of phages in these ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that O157:H7-infecting phages may play a role in the ecology and transient colonization of cattle by E. coli O157:H7. Further, this and previous data suggest that before starting in vivo pathogen eradication studies using phage or any other regime, test animals should be enrichment screened for phage to avoid erroneous results.  相似文献   

17.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

18.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

19.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (C(T)) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the C(T) and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 x 10(-5) pg of E. coli O157:H7 DNA ml(-1) equivalent to approximately 6.4 x 10(3) CFU of E. coli O157:H7 ml(-1) based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were >/=3.5 x 10(4) CFU g(-1). E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g(-1) with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

20.
AIM: To determine the survival of Escherichia coli O157:H7 in dairy wastewater from on-site holding lagoons equipped with or without circulating aerators. METHODS AND RESULTS: Survival was monitored in dairy lagoon microcosms equipped with or without scale-size circulators. Both laboratory strains of E. coli O157:H7 and an isolate of E. coli H7 from wastewater had poor survival rates and none proliferated in water from waste lagoons with or without circulators. Furthermore, the decline of E. coli O157:H7 was not enhanced in those microcosms equipped with circulators. Strain variation in survival was observed in both circulated and settling waters. The decline rate of E. coli O157:H7 Odwalla strain increased proportionately with the inoculum load. Escherichia coli failed to establish itself in wastewater even after four sequential inoculations simulating continuous faecal input into the lagoon. The native aerobic bacteria survived longer with a decimal reduction time of 21.3 days vs either introduced or native E. coli, which declined rapidly with decimal reduction time of 0.5-9.4 days. CONCLUSIONS: Escherichia coli O157:H7 failed to establish and proliferate in dairy wastewater microcosms equipped with or without circulating aerators. SIGNIFICANCE AND IMPACT OF THE STUDY: This study furthers our knowledge of pathogen survival in wastewater, and suggests that proper management of wastewater before its use in irrigation is essential to reduce pathogen transfer to crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号