首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of carbon import by tomato fruits has been relatedto their carbon metabolism by examining the effects of fruittemperature on the metabolism of imported assimilates. 14C–sucrose,–glucose, –fructose, –malic acid and –citricacid were injected individually into young growing tomato fruitswhich were subsequently maintained at 25 or 5 °C for 48h. Fruit temperature greatly affected the proportions of 14Clost from the fruits by export and respiration. Only 40 percent of the injected 14C from 14C–sugars and 20 per centfrom 14C–acids was recovered from fruits at 25 °C.Less than 10 per cent of the injected 14C was exported, thebalance being respired. In contrast, more than 50 per cent ofthe injected 14C was recovered from cooled fruits, in whichthe import rate of carbon was presumably reduced, and 20–36per cent of injected 14C was exported. Cooling enhanced thesynthesis of 14C–sucrose from injected 14C–hexosesand inhibited the incorporation of 14C into starch and insolubleresidue. When 14C–sugars were injected, radioactivityexported from the cooled fruits was detected as sucrose in thephloem of the peduncles; radioactivity was also detected instems and roots when fruits were cooled. In almost fully–grownfruits injected 14C–compounds were metabolized less readilythan in smaller fruits. Conversion of 14C–hexoses to 14C–sucrosewas again enhanced by cooling (5 °C, but was less in fruitsmaintained at 35 °C than in controls. Lycopersicon esculentum, tomato, fruit, translocation, carbon metabolism  相似文献   

2.
Carbon Translocation in the Tomato: Carbon Import and Fruit Growth   总被引:8,自引:0,他引:8  
WALKER  A. J.; HO  L. C. 《Annals of botany》1977,41(4):813-823
The rates of carbon import by fruits were measured over 48 has the sum of the change in the total organic carbon contentof the fruit and the respiratory loss of carbon. Over a rangeof fruit sizes from 20–90 per cent of the maximum volumethe smaller fruits imported carbon at an absolute rate (mgCfruit–1 h–1) nearly twice that of the larger fruits.The imported leaf assimilates, identified as the 14C-compoundsalong the pathway between a 14CO2-fed leaf and a young fruit,comprised 90 per cent sucrose and 10 per cent glutamic acid,aspartic acid and malic acid. Within the fruit the imported14C-sucrose was hydrolysed into hexoses. The changes in thelevels of starch and insoluble residue in the fruit were positivelycorrelated with the carbon import rates. In the largest fruitswith the lowest import rates, there was breakdown of insolubleresidue and less accumulation of starch, but a significant increasein the level of sucrose. The sink strength of a tomato fruitis dependent more on sink activity than on sink size.  相似文献   

3.
L. C. HO   《Annals of botany》1979,43(4):437-448
Simultaneous measurement of export from leaves and import tofruits were made on tomato plants reduced to one fully expandedleaf and one fruit. Experimental leaves were exposed to sixlight flux densities (0.5–100 W m–2) for 24 h whilerapidly growing fruits were kept in the dark at 22 °C. The rates of export of assimilate from these leaves varied from70 to 120 mg C leaf–1 day–1 corresponding with ratesof carbon fixation from 3 to 290 mg C leaf–1 day–1.Export from leaves with the lowest carbon fixation rates weremaintained by a loss of up to one-sixth of their initial carbon.In contrast, leaves with the highest carbon fixation rates exportedonly half the newly fixed carbon. The rates of import of assimilate to similar-sized fruits (c.16 cm3) were between 80 and 110 mg C fr–1 day–1but differed from the export rates of the source leaves. Thespecific growth rates and the specific respiration rates ofthe fruits were related to their initial carbon content at thebeginning of the experiment. Thus, over 24 h, the rate of importwas predetermined by the developmental stage of the fruit unalteredby the rate of current carbon fixation in the source leaf. Translocationof assimilate was regulated by sink demand under both source-and sink-limiting conditions in this short-term situation. The dynamic relationship between assimilate production in leavesand its utilization in fruits is discussed together with therole of sucrose concentration in these organs in regulatingtransport. Lycopersicon esculentumL, tomato assimilate translocation, source-sink relationships  相似文献   

4.
DINAR  M.; STEVENS  M. A. 《Annals of botany》1982,49(4):477-483
The effect of temperature on sucrose uptake, and changes inlevels of starch, hexoses and sucrose in detached tomato fruitswas used to investigate the role of the sink in regulation ofcarbon import. Sucrose uptake was lower at 5 °C and greaterat 40 °C than at 25 °C. Conversion of radioactive componentsto starch was lower at both 5 °C and 40 °C than at 25°C, while the levels of non-radioactive starch was similarat all three temperatures. There was a depletion of glucoseand fructose in fruits at 40 °C. Uptake of sucrose froman agar medium by detached tomato fruits was negatively correlatedwith initial sucrose content of the fruit. The results indicatethat carbon import by tomato fruits is largely determined bysucrose levels which can be affected by metabolic activity. Lycopersicon esculentum L., tomato, fruit, sucrose uptake, temperature, carbon metabolism  相似文献   

5.
Measurements of a complete carbon balance sheet over a 48 hperiod for growing tomato fruits at different fruit sizes andtemperature have been carried out. The rates of carbon import,respiration, and growth have been calculated and related toeach other and to the levels of certain carbon metabolites inthe fruit. It was found that there is an excellent linear relationshipbetween the import rate and the sucrose level in the fruit,consistent with the hypothesis that, for the tomato fruit, carbonflows down the sucrose concentration gradient at a rate proportionalto the gradient. This agrees with the findings of Mason andMaskell in cotton. Moreover, the resistance to transport wasrelatively independent of fruit size and temperature. The usualanalysis of respiration in terms of growth and maintenance componentsallowed the determination of conversion efficiencies and maintenancecoefficients for different fruit sizes and temperatures. Asobserved by other authors with other plants, the growth conversionefficiencies were temperature-independent, whereas the maintenancecoefficients were strongly temperature-dependent. The overallconversion efficiency was optimum at 25°C. The specificgrowth rate and the starch level in the tomato fruit were foundto be related.  相似文献   

6.
In earlier work the effects of light intensity over the range31 to 250 J cm–2 day–1 and carbon dioxide concentrationfrom 325 to 900 ppm with 8-h days at 18.3 °C and 16-h nightsat 15.6 °C were described. The present paper is concernedwith three further experiments with light levels up to 375 Jcm–2 day–1 (which corresponds to the daily totalin a glasshouse in southern England in early May or August andthe intensity is approximately that of mid-winter sunshine),carbon dioxide concentration up to 1500 ppm, and day temperaturesof 18.3 to 29.4 °C. Final plant weight was increased by light over the range 125–375J cm–2 day–1 and by carbon dioxide over the range325–900 ppm, with positive interaction between them; thisinteraction was increased by raising the temperature to 23.9°C and somewhat more at 29.4 °C day temperature. Leaf-arearatio and specific leaf area were reduced by increasing eitherlight or carbon dioxide but there was little effect of temperature.Leaf-weight ratios were uniform within experiments but therewere small consistent differences between one experiment andthe other two which also affected leaf-area ratios. Mean unit leaf rate was scarcely affected by day temperatureover the range investigated. There were the usual increasesdue to increased light and carbon dioxide concentration anda consistent difference in absolute value between one experimentand the other two. These differences in mean unit leaf rateare illustrated in detail in the ontogenetic trend of unit leafrate and plant size. Lower unit leaf rates were to a considerableextent compensated for by increased leaf-area ratios in theusual way. Despite the substantial differences in day temperature the specificwater contents (g water g dry weight–1) differed little,showing in the majority of cases higher values in the highertemperature for otherwise similar treatment combinations. Flower development was somewhat delayed at 23.9 °C day temperature,and substantially so at 29.4 °C. Lateral branch length wasincreased at 23.9 °C and excessively so at 29.4 °C.This reveals quite clearly that a temperature optimum for vegetativegrowth may not be the optimum for flowering performance norproduce a desirable plant shape. Despite the marked effects of temperature on rate of flowerdevelopment, the relationship between flower development andthe ratio of flower to total weight was the same for all treatmentcombinations in all three experiments and coincident with thatreported earlier. Gasometric determinations indicated that respiratory loss bythe whole plant was a smaller proportion of net photosyntheticgain at a temperature of 29.4 °C than at 18.3 °C andwas likewise a smaller proportion at 1500 ppm carbon dioxidethan at 325 ppm. If photorespiration of leaves is assumed tobe as great as their dark respiration, the respiratory lossesare in the range of 31–50 per cent of the gross gain.Greater rates of photorespiration would increase the proportionaterespiratory loss.  相似文献   

7.
The carbon dioxide exchange of developing apple fruits was monitoredduring development. The results of measurements on detachedfruits in the laboratory were consistent with those made onattached fruit in the field. Respiration rate at 20 °C inthe dark declined from 120 ng CO2 g–1 fr. wt. s–1on 5 June (4 weeks after full bloom) to less than 3 ng g–1fr. wt. s–1 by late September. In the light, net CO2 evolutionwas much decreased, but on no occasion did photosynthesis exceedrespiration and no net CO2 uptake was detected. The Q10 fordark respiration over the interval from 15 to 25 °C changedfrom 2.8 in early June to 1.6 in early August  相似文献   

8.
The rate of carbon transport based on the carbon balance overa 6-h period from a mature tomato leaf was measured overa rangeof net photosynthetic rates from 0.1 to 4.9 mg C dm–2h–1 under light flux densities from 4 to 140 W m–2.A proportional relationship was demonstrated between the rateof carbon transport and carbon fixation when the carbon fixationrate was higher than 2 mg C dm–2 h–1.Below a carbonfixation rate of 1 mg C dm–2 h–1, the rate of carbonexport was maintained at 1 mg C dm–2 h–1 at theexpense of the breakdown of starch. A highly significant correlationwas observed between sucrose concentration and the rate of carbontransport. The sucrose concentration in the leaf appears tobe the factor controlling carbon export.  相似文献   

9.
KNEE  M. 《Journal of experimental botany》1987,38(10):1724-1733
Knee, M. 1987. Development of ethylene biosynthesis in pearfruits at — 1 °C.—J. exp. Bot. 38: 1724–1733. The regulation of ethylene synthesis in pear fruits was investigated.During storage for 60 d at — 1 °C the rate of ethylenesynthesis increased 100-fold but the concentration of 1-aminocyclopropane-l-carboxylicacid (ACC) increased only 2-fold and ACC synthase activity waslow. On transfer to 15 °C after storage at — 1 °Cethylene synthesis increased 10-fold within 10 h but ACC synthaseactivity only increased rapidly after 24 h; the decline in ACClevels during the first 16 h at 15 °C was insufficient tosustain ethylene synthesis. Ethylene synthesis was further investigatedusing discs cut from the mid cortex of pear fruits. Synthesiswas inhibited by aminoethoxyvinylglycine (AVG) and amino-oxyaceticacid at all stages of ripening. The rate of synthesis and ACCsynthase activity increased rapidly after slicing of pears heldat — 1 °C but more slowly in discs cut from pearsimmediately after harvest. Cycloheximide (CHI) inhibited theseincreases and reversed increases resulting from pre-incubationof discs. A combination of CHI and AVG abolished the capacityof discs to synthesize ACC and ethylene production was curtailed.Cordycepin and actinomycin-D were less effective as inhibitorsof the development of ethylene synthesis and ACC synthase activitythan as inhibitors of incorporation of 5-[3H] uridine into totalRNA or poly A rich RNA. The ability of discs to develop ethylenesynthesis and ACC synthase activity in the presence and absenceof cordycepin increased concurrently during storage of wholefruits at — 1 °C. This suggested that mRNA for ACCsynthase was formed at — 1 °C. Key words: 1-Aminocyclopropane-l-carboxylic acid, ethylene, fruit ripening, Pyrus communis L. (fruit ripening)  相似文献   

10.
GARY  C. 《Annals of botany》1989,63(4):449-458
In order to examine the suitability of estimating maintenancerespiration in prolonged darkness, the variation of structuraldry matter (SDM) was calculated on vegetative tomato plantsduring 48 h of darkness. For that purpose, the time-coursesof respiration rate and carbohydrate content were recorded inshoots and roots at temperatures of 10, 15, 20, and 25 °C Two exponential declines of respiration rate, separated by ashort resumption, were observed in shoots and roots, differentcarbohydrate pools might be involved. Respiration rate was alwayshigher in roots than in shoots: the part played by energy costsof mineral absorption has to be investigated. After 14 h ofdarkness, a fall in respiration rate was associated with a progressiveexhaustion of sucrose and starch - which was quicker at highertemperatures - and a decrease in shoot to root carbon translccation.After 24 h of darkness, respiration stabilized at all temperatures.However, structural growth persisted throughout the dark periodat 10 °C, stopped after about 14 h darkness at. 15 and 20°C, and became negative beyond 24 h at 25 °C The hypothesis of maintenance of SDM after a period of darknesscan thus be invalidated. The simple observation of the time-courseof respiration rate does not allow complete inferences to bemade concerning biomass maintenance Lycopersicon esculentum Mill., tomato, respiration, maintenance respiration, carbohydrate reserves, translocation, structural dry matter, temperature  相似文献   

11.
HOLE  C. C.; BARNES  A. 《Annals of botany》1980,45(3):295-307
Carbon dioxide efflux from 5- to 20-day-old pea fruits was measuredfor plants grown in controlled environment at 15 °C and600 µmol s–1 m–2 photon flux density in a16 h photoperiod. The rate of CO2 output per fruit increasedquickly from 0.005 to 0.018 mg CO2 min–1 during fruitelongation and subsequently more slowly to 0.030 mg CO2 min–1as the fruits inflated. On a d. wt basis the rate was highest,0.175 mg CO2 g–1 min–1, in the youngest fruits anddeclined curvilinearly with increasing fruit weight to 0.02mg CO2 g–1 min–1. Separation of maintenance andgrowth components was achieved by starvation methods and bymultiple regression analysis. From the latter method estimatesof the maintenance coefficient declined hyperbolically from150±8.7 mg carbohydrate g–1 d. wt day–1 inthe very young fruits (0.05 g) to 10.4±0.36 mg carbohydrateg–1 d. wt day–1 in older fruits (2.0 g). On a nitrogenbasis maintenance costs decreased from 2240 to 310 mg carbohydrateg–1 nitrogen day–1 while nitrogen concentrationfell from 6.7 to 3 per cent d. wt. A simple linear relationshipbetween maintenance cost per unit d. wt and nitrogen concentrationwas not observed. A growth coefficient of 50±6.7 mg carbohydrate g–1growth (equivalent to a conversion efficiency, YG, of 0.95)was estimated for all fruits examined. The overall efficiency, Y, increased from a mean of 0.70 to0.85 during fruit elongation and subsequently declined to 0.80.For a given fruit weight, efficiency increased asymptoticallywith relative growth rate; both asymptote and slope of the relationshipincreased as the fruits grew. Pisum sativum L., garden pea, legume fruit, carbon dioxide efflux, maintenance respiration, growth respiration  相似文献   

12.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

13.
Shishido, Y., Challa, H. and Krupa, J. 1987. Effects of temperatureand light on the carbon budget of young cucumber plants studiedby steady-state feeding with 14CO°2J. exp. Bot. 38: 1044–1054. The effect of temperature on the fate of 14C assimilated insteady-state by the expanding third leaf of cucumber seedlingswas studied at irradiances of either 30 or 75 W m–2 (PAR)with a daylength of 8 h. The irradiance did not affect the relativedistribution of 14C assimilated by the source leaf between growth,respiration and export. In the range 15–30°C risesin temperature generally increased the proportion of carbonexported. The average rate of carbon exported during the nightwas about half the rate in the day. About 45% of the exportedcarbon was lost by respiration. The distribution pattern ofcarbon exported during the day differed considerably from thatof carbon exported during the night. The intensity of irradiance did not affect the proportion oflabelled carbon recovered from the roots. Thus the decreasedshoot/root ratio generally observed with increased irradianceis not directly controlled by carbohydrate supply. We found that the distribution patterns of exported 14C do notnecessarily represent the real carbon distribution, due to differencesin specific activity of imported carbon of individual organs.Consequently distribution patterns of 14C observed in experimentswith one source leaf have to be considered with caution. Key words: Carbon budget, 14C, 14C steady-state feeding, translocation, respiration, assimilate distribution, cucumber, temperature  相似文献   

14.
Potassium uptake by Helianthus annuus plants growing in waterculture was found to be closely dependent upon the translocationof sugar to the roots. This relationship was used to determinethe effect of cooling on the rate of translocation. A Q10 ofapproximately 3 over the range 0–25° C was obtainedbut tracer experiments showed that translocation was not stoppedat 0° C. A complete recovery in translocation rate appeared to occurin some experiments after prolonged cooling. It is concludedthat this can only be satisfactorily explained on the assumptionthat carbohydrates move in the sieve tubes by mass flow. Thedriving force of such a mass flow is considered to be locatedin each sieve element.  相似文献   

15.
Translocation of Calcium in Relation to Tomato Fruit Growth   总被引:5,自引:1,他引:4  
Regulation of the uptake and distribution of calcium in thetomato plant was investigated in plants grown in recirculatingnutrient solutions at electrical conductivities of 2,7,12 and17 millisiemens (mS). Despite an increased calcium content inthe nutrient solution at high conductivity (7–17 mS),the accumulation of calcium by fruit was progressively reducedby increasing salinity, particularly in the distal half. Theincidence of blossom-end rot in fruit (BER) also increased withsalinity. The uptake of water and 45Ca by plants was substantially reducedin the high salinity treatment (17 mS) and, to a lesser extent,by high relative humidity (90 per cent r.h. at 20 °C). Further,the translocation of 45Ca from roots to shoots was reduced byhigh salinity, while the percentage distribution of 45Ca tothe apex was reduced by high humidity. Only approx. 2 per centof the 45Ca taken up by a plant was imported by the truss. The uptake of 45Ca and its distribution among pedicel, calyxand berry by detached fruit in 24 h showed that fruit from highsalinity plants had a reduced uptake and a lower accumulationof 45 Ca in the berry than in the calyx. In addition, plants grown at high conductivity had a lower rateof xylem sap exudation from decapitated plants. The fruit ofthese plants had a smaller xylem cross-sectional area in thefruit pedicel and a smaller calyx than those of the low conductivitytreatment. Calcium, translocation, tomato, fruit, blossom-end rot  相似文献   

16.
Some Low-temperature Effects on Sieve Tube Translocation in Salix viminalis   总被引:1,自引:0,他引:1  
The data presented on translocation of 14C-labelled compoundsin Salix viminalis show that above a temperature close to –4°C translocation occurs, whilst below –4 °C inmost cases it does not. Stoppages were irreversible when the temperature of the cooledstem was raised again to normal (approximately 20 °C) andappeared to involve some disruption of the phloem. The temperaturesat which the bark was found to freeze were found to be closelysimilar, with respect to level and variability, to the stoppingtemperature. Respiration measurements on isolated strips of bark at –2°C showed that oxygen uptake fell to approximately 5 percent of its value at 25 °C. The decreased level of radioactivity in the cooled regions ofthe stems is considered to be evidence that the exchange oflabelled compounds between the sieve tubes and the surroundingcells was slowed up at low temperatures.  相似文献   

17.
Root growth in chickpea (Cicer arietinum) has been studied fromthe early vegetative phase to the reproductive stage in orderto elucidate its growth and maintenance respiration and to quantifythe translocation of assimilates from shoot to root. A carbonbalance has been drawn for this purpose using the growth andrespiration data. The increase in the sieve tube cross-sectionalarea was also followed simultaneously. Plants growing in a nutrient culture medium were studied todetermine the relative growth rate (RGR) 5–60 d aftergermination. RGR declined from 113 to 41 mg d–1 g–1during the measurement period. Simultaneous with the RGR analysis,respiration rate was also measured using an oxygen electrode.The respiration rate declined as the plants aged and a drasticreduction was recorded following anthesis. The relationshipbetween RGR and respiration rate was used to extrapolate themaintenance respiration (m) and growth respiration (1/YEG).The respiration quotient (r.q.) of the roots was 1.2 and theQ10 in the range 20–25 °C was 2·2. A carbon balance for the roots was constructed by subtractingthe carbon lost during respiration from that gained during growth.The roots were found to respire no less than 80% of the carbontranslocated. The increase in the cross-sectional area composed of sieve tubeswas measured near the root-shoot junction as the plants grew.Chickpea has storied sieve plates which simplifies these measurements.Their cross-sectional area increased during growth mainly becauseof an increase in sieve tube number. The diameter of individualsieve tubes remained constant. Specific mass transfer (SMT) values for seive tubes into theroots have been computed during various stages of growth. SMTvalues were relatively constant before anthesis (approx. 6·5g h–1 cm–2), but decreased following anthesis. Wedid not evaluate possible retranslocation from roots: any suchretranslocation would have the effect of increasing our SMTvalues. Chickpea, Cicer arietinum, legume, root, respiration, phloem, translocation, carbon balance, specific mass transfer, sieve-tube dimensions  相似文献   

18.
Effect of Temperature on the Growth and Development of Tomato Fruits   总被引:4,自引:1,他引:3  
Tomato fruits ripened 95, 65, 46 and 42 d after flower openingwhen plants were grown under controlled environmental conditionsat 14, 18, 22 and 26 °C, respectively. A similar responseto temperature was observed when the temperature of individualtrusses was modified while the plants were grown at 20 °C.These data were used to develop a thermal time model for fruitmaturation. However, when buds/fruits were heated at differentstages in their development, the thermal time model proved tobe a poor predictor of the time of ripening. Fruits were moresensitive to elevated temperature in their later stages of maturation.Temperature also affected the rates of fruit growth in volume;these could be adequately described using a Gompertz function.Low temperatures reduced absolute volume growth rates and delayedthe time at which the absolute growth rate became maximal. However,the response of fruit growth to temperature differed when onlythe temperature of the fruits was modified. There was a tendencytowards small parthenocarpic fruits at both high (26 °C)and low (14 °C) temperature regimes which, combined withlow flower numbers and poor fruit set at 26 °C, resultedin low fruit yields. Temperature also affected the shoot drymatter content and partitioning. Copyright 2001 Annals of BotanyCompany Tomato, Lycopersicon esculentum, fruit, growth, ripening, temperature, temperature stress, parthenocarpy  相似文献   

19.
Experiments were undertaken on a simplified sugar beet systemto characterize the phloem translocation response to slow coolingtreatments that were applied to the source leaf petiole. Inthese experiments the temperature was decreased by 4°C every16 min, such that the tissue temperature was lowered from 25°Cto 1°C over a period of 80 min. Our results indicated thatan initial slow cooling treatment, on a given test plant, causedno change in the rate of translocation. However, all subsequentslow cooling regimes that were applied to the same petiole positionelicited a characteristic step-type inhibition. This inhibitionaveraged about 10% of the original translocation rate in allcases with no recovery being observed. The data suggest thatthe initial cooling treatment induced an alteration in the petioletissue which facilitated the inhibition phenomenon during subsequentslow coolings. This alteration was shown to be localized withinthe upstream region of the chilled petiole segment, followingan initial slow cooling, or throughout the chilled petiole segmentafter an initial quick cooling from 25°C to 1°C. Resultsalso show that the alteration is a long-lived phenomenon thathas no detectable influence on the quick-cooling induced transientinhibition of translocation. Key words: Phloem, Translocation, Cooling response, Petiole  相似文献   

20.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号