首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Arterial smooth muscle cells grown in primary culture on a substrate of fibronectin in serum-free medium are converted from a contractile to a synthetic phenotype. This process is dependent on integrin signaling and includes a major structural reorganization with loss of myofilaments and formation of a large secretory apparatus. Functionally, the cells lose their contractility and become competent to migrate, secrete extracellular matrix components, and proliferate in response to growth factor stimulation. Here, it is demonstrated that the mitogen-activated protein kinases ERK1/2 play a vital role in the fibronectin-mediated modification of rat aortic smooth muscle cells. Immunoblotting showed that phosphorylated ERK1/2 (p44/p42) were expressed throughout the period when the change in phenotypic properties of the cells took place. Moreover, phosphorylated ERK1/2 accumulated in the nucleus as revealed by immunocytochemical staining. Additional support for an active role of ERK1/2 in the shift in smooth muscle phenotype was obtained by the finding that PD98059, an inhibitor of the upstream kinase MEK1, potently suppressed both the expression of phosphorylated ERK1/2 and the fine structural rebuilding of the cells. In conclusion, the observations point to an important and multifaceted role of ERK1/2 in the regulation of differentiated properties and growth of vascular smooth muscle cells.  相似文献   

2.
The stimulation of platelet-derived growth factor (PDGF) receptors shifts vascular smooth muscle (VSM) cells toward a more proliferative phenotype. Thrombin activates the same signaling cascades in VSM cells, namely the Ras/Raf/MEK/ERK and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways. Nonetheless, thrombin was not mitogenic, but rather increased the expression of the smooth muscle-specific myosin heavy chain (SM-MHC) indicative of an in vitro re-differentiation of VSM cells. A more detailed analysis of the temporal pattern and relative signal intensities revealed marked differences. The strong and biphasic phosphorylation of ERK1/2 in response to thrombin correlated with its ability to increase the activity of the SM-MHC promoter whereas Akt was only partially and transiently phosphorylated. By contrast, PDGF, a potent mitogen in VSM cells, induced a short-lived ERK1/2 phosphorylation but a complete and sustained phosphorylation of Akt. The phosphorylated form of Akt physically interacted with Raf. Moreover, Akt phosphorylated Raf at Ser(259), resulting in a reduced Raf kinase activity and a termination of MEK and ERK1/2 phosphorylation. Disruption of the PI 3-kinase signaling prevented the PDGF-induced Akt and Raf-Ser(259) phosphorylation. Under these conditions, PDGF elicited a more sustained MEK and ERK phosphorylation and increased SM-MHC promoter activity. Consistently, in cells that express dominant negative Akt, PDGF increased SM-MHC promoter activity. Furthermore, expression of constitutively active Akt blocked the thrombin-stimulated SM-MHC promoter activity. Thus, we present evidence that the balance and cross-regulation between the PI 3-kinase/Akt and Ras/Raf/MEK signaling cascades determine the temporal pattern of ERK1/2 phosphorylation and may thereby guide the phenotypic modulation of vascular smooth muscle cells.  相似文献   

3.
4.
The Rac1/Cdc42 effector p21-activated kinase (PAK) is activated by various signaling cascades including receptor-tyrosine kinases and integrins and regulates a number of processes such as cell proliferation and motility. PAK activity has been shown to be required for maximal activation of the canonical Ras/Raf/MEK/ERK Map kinase signaling cascade, likely because of PAK co-activation of Raf and MEK. Herein, we found that adhesion signaling also stimulates an association between PAK1 and ERK1/2. PAK1 and ERK1/2 co-immunoprecipitated from rat aortic smooth muscle cells (SMC) plated on fibronectin, and the two proteins co-localized in membrane ruffles and adhesion complexes following PDGF-BB or sphingosine 1-phosphate treatment, respectively. Far Western analysis demonstrated a direct association between the two proteins, and peptide mapping identified an ERK2 binding site within the autoinhibitory domain of PAK1. Interestingly, deletion of a major ERK binding site in PAK attenuates activation of an ERK-dependent serum-responsive element (SRE)-luciferase reporter gene, indicating that association between PAK and ERK is required to facilitate ERK signaling. We also show that ERK2 phosphorylates PAK1 on Thr(212) in vitro and that Thr(212) is phosphorylated in smooth muscle cells following PDGF-BB treatment in an adhesion- and MEK/ERK-dependent fashion. Expression of a phosphomimic variant, PAK-T212E, does not alter ERK association, but markedly attenuates downstream ERK signaling. Taken together, these data suggest that PAK1 may facilitate ERK signaling by serving as a scaffold to recruit Raf, MEK, and ERK to adhesion complexes, and that subsequent growth factor-stimulated phosphorylation of PAK-Thr(212) by ERK may serve to provide a negative feedback signal to control coordinate activation of ERK by growth factor- and matrix-induced signals.  相似文献   

5.
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.  相似文献   

6.
This study examined the premise that the atherogenic lipoprotein, beta-migrating very low density lipoprotein (betaVLDL), might activate the mitogen-activated protein (MAP) kinases ERK1/ERK2, thereby contributing to the induction of smooth muscle cell proliferation in atherosclerosis. The data show that betaVLDL activates rabbit smooth muscle cell ERK1/ERK2. Interestingly, ERK1/ERK2 activation is mediated by G protein-coupled receptors that transactivate the epidermal growth factor (EGF) receptor. betaVLDL-induced MAP kinase activation depends on Ras and Src activity as well as protein kinase C. The inhibition of lysosomal degradation of betaVLDL has no effect on ERK1/ERK2 activation. The contribution of betaVLDL-induced activation of ERK1/ERK2 to smooth muscle cell proliferation was also explored. betaVLDL induces expression of egr-1 and c-fos mRNA. Despite its ability to stimulate early gene expression, betaVLDL alone is unable to inspire quiescent cells into S phase. When added in conjunction with EGF, however, stimulation of [(3)H]thymidine incorporation into DNA and an increase in histone gene expression are observed. Moreover, betaVLDL plus EGF synergistically induce cyclin D1 expression and down-regulate p27(KIP1) expression. The addition of either betaVLDL or EGF stimulates a robust activation of ERK1/ERK2, but the addition of both agents simultaneously sustains the activation for a longer time period. Inhibition of MAP kinase kinase, pertussis toxin-sensitive G proteins, the EGF receptor, or protein kinase C blocks betaVLDL plus EGF-induced proliferation, demonstrating that activation of the betaVLDL-induced signaling pathway results in smooth muscle cell proliferation.  相似文献   

7.
Adrenomedullin is a potent vasodilator peptide secreted by vascular endothelial and smooth muscle cells. Adrenomedullin stimulates the proliferation of quiescent rat vascular smooth muscle cells (VSMCs) via p42/p44 ERK/MAP kinase activation. Recently, receptor-activity-modifying proteins (RAMPs) have been shown to transport calcitonin-receptor-like-receptor (CRLR) to the cell surface to present either as CGRP receptor or adrenomedullin receptor. We investigated whether adrenomedullin acts as an autocrine/paracrine growth factor for cultured rat VSMCs and whether coexpressions of RAMP isoform and CRLR may mediate p42/p44 ERK/MAP kinase activation by adrenomedullin. Adrenomedullin dose-dependently stimulated the proliferation of quiescent rat VSMCs, and this effect was inhibited by an adrenomedullin receptor antagonist, a MAP kinase kinase inhibitor and phosphatidylinositol 3-kinase inhibitors. Addition of either CGRP(8-37) or anti-adrenomedullin antibody to exponentially growing rat VSMCs inhibited the serum-induced cell proliferation, suggesting its role as an autocrine/paracrine growth factor. Cotransfection of RAMP2 or RAMP3 with CRLR into rat VSMCs potentiated activation of cAMP activity, but not of p42/p44 ERK/MAP kinase activity in response to adrenomedullin. Our results suggest that adrenomedullin is an autocrine/paracrine growth factor for rat VSMCs via p42/p44 ERK/MAP kinase and phosphatidylinositol 3-kinase pathways and that it is not mediated by human RAMP-CRLR receptors.  相似文献   

8.
In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells. In addition, stimulation of ASM with VEGF activates ERK, but not p38MAPK, and fibronectin secretion is ERK dependent. Both ERK activation and fibronectin secretion appear to be mediated through the VEGF receptor flt-1, as evidenced by the effects of the flt-1-specific ligand placenta growth factor. Finally, we demonstrate that ASM cells constitutively secrete VEGF, which is increased in response to PDGF, transforming growth factor-beta, IL-1beta, and PGE(2). We conclude that ASM-derived VEGF, through modulation of the extracellular matrix, may play an important role in airway remodeling seen in asthma.  相似文献   

9.
10.
Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c-Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features.  相似文献   

11.
12.
Platelet‐derived growth factor (PDGF) can promote vascular smooth muscle cells (VSMCs) to switch from the quiescent contractile phenotype to synthetic phenotype, which contributes to atherosclerosis. We aimed to investigate the role of microRNA let‐7g in phenotypic switching. Bioinformatics prediction was used to find let‐7g target genes in the PDGF/mitogen‐activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal‐regulated kinase (ERK)/Krüppel‐like factor‐4 (KLF4) signalling pathway that affects VSMC phenotypic switching. The luciferase reporter assay and let‐7g transfection were used to confirm let‐7g target genes. Two contractile proteins alpha‐smooth muscle actin (α‐SMA) and calponin were VSMC‐specific genes and were measured as the indicators for VSMC phenotype. Lentivirus carrying the let‐7g gene was injected to apolipoprotein E knockout (apoE?/?) mice to confirm let‐7g's effect on preventing atherosclerosis. Through the PDGF/MEKK1/ERK/KLF4 signalling pathway, PDGF‐BB can inhibit α‐SMA and calponin. The PDGFB and MEKK1 genes were predicted to harbour let‐7g binding sites, which were confirmed by our reporter assays. Transfection of let‐7g to VSMC also reduced PDGFB and MEKK1 levels. Moreover, we showed that let‐7g decreased phosphorylated‐ERK1/2 while had no effect on total ERK1/2. KLF4 can reduce VSMC‐specific gene expression by preventing myocardin–serum response factor (SRF) complex from associating with these gene promoters. The immunoprecipitation assay showed that let‐7g decreased the interaction between KLF4 and SRF. Further experiments demonstrated that let‐7g can increase α‐SMA and calponin levels to maintain VSMC in the contractile status. Injection of lentivirus carrying let‐7g gene increased let‐7g's levels in aorta and significantly decreased atherosclerotic plaques in the apoE?/? mice. We demonstrated that let‐7g reduces the PDGF/MEKK1/ERK/KLF4 signalling to maintain VSMC in the contractile status, which further reduce VSMC atherosclerotic change.  相似文献   

13.
Spinal cord injury is a devastating health problem that affects thousands of individuals each year. The neurons were destroyed. NT-3 is a recently discovered neurotrophin. This study sought to understand the potential involvement of MAPKs in NT-3-mediated growth inhibition of human neurons. We applied different concentrations of NT-3 and observed the growth rate of the cells and the changes in the phosphorylation state of the MAPKs ERK1/2, JNK and p38. This study discovered that NT-3-induced HNC growth was promoted primarily by phosphorylated ERK1/2, and that this phosphorylation, as well p90rskphosphorylation, was mediated by TrkC. The ERK1/2 pathway is known to play an essential role in the NT-3-mediated growth of human neurons. In conclusion, our study suggests that NT-3 promotes the growth of human neurons cells primarily through the TrkC/ERK pathway.  相似文献   

14.
Phenotype modulation of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of various vascular diseases, including hypertension and atherosclerosis. Several microRNAs (miRNAs) were found involved in regulating the VSMC phenotype with platelet-derived growth factor (PDGF) treatment, but the role of miRNAs in the mechanical stretch-altered VSMC phenotype is not clear. Here, we identified miR-145 as a major miRNA contributing to stretch-altered VSMC phenotype by miRNA array, quantitative RT-PCR and gain- and loss-of-function methods. Our data demonstrated that 16% stretch suppressed miR-145 expression, with reduced expression of contractile markers of VSMCs cultured on collagenI; overexpression of miR-145 could partially recover the expression in stretched cells. Serum response factor (SRF), myocardin, and Kruppel-like factor 4 (KLF4) are major regulators of the VSMC phenotype. The effect of stretch on myocardin and KLF4 protein expression was altered by miR-145 mimics, but SRF expression was not affected. In addition, stretch-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and up-regulated angiotensin-converting enzyme (ACE) were confirmed to be responsible for the inhibition of miR-145 expression. Mechanical stretch inhibits miR-145 expression by activating the ERK1/2 signaling pathway and promoting ACE expression, thus modulating the VSMC phenotype.  相似文献   

15.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. In this study, we tested whether TLR4 signaling promotes a proinflammatory phenotype in human and mouse arterial smooth muscle cells (SMC), characterized by increased cytokine and chemokine synthesis and increased TLR expression. Human arterial SMC were found to express mRNA encoding TLR4 and the TLR4-associated molecules MD-2 and CD14 but not TLR2 mRNA. Mouse aortic SMC, on the other hand, expressed both TLR2 and TLR4 mRNA constitutively. Human SMC derived from the coronary artery, but not those from the pulmonary artery, were found to express cell surface-associated CD14. Low concentrations (ng/ml) of Escherichia coli LPS, the prototypical TLR4 agonist, markedly stimulated extracellular regulated kinase 1/2 (ERK1/2) activity, induced release of monocyte-chemoattractant protein-1 (MCP-1) and interleukin (IL)-6, and stimulated IL-1alpha expression in human aortic SMC, and exogenous CD14 enhanced these effects. Expression of a dominant negative form of TLR4 in human SMC attenuated LPS-induced ERK1/2 and MCP-1 release. LPS was a potent inducer of NF-kappaB activity, ERK1/2 phosphorylation, MCP-1 release, and TLR2 mRNA expression in wild-type mice but not in TLR4-signaling deficient mouse aortic SMC. These studies show that TLR4 signaling promotes a proinflammatory phenotype in vascular smooth muscle cells (VSMC) and suggest that VSMC may potentially play an active role in vascular inflammation via the release of chemokines, proinflammatory cytokines, and increased expression of TLR2.  相似文献   

16.
17.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   

18.
Vascular smooth muscle cells (VSMCs) may switch their phenotype between a quiescent contractile phenotype and a synthetic phenotype in response to cyclic strain, and this switch may contribute to hypertension, atherosclerosis, and restenosis. SIRT 6 is a member of the sirtuin family, and plays an important role in different cell processes, including differentiation. We hypothesized that cyclic strain modulates the differentiation of VSMCs via a transforming growth factor-β1 (TGF-β1)-Smad-SIRT6 pathway. VSMCs were subjected to cyclic strain using a Flexercell strain unit. It was demonstrated that the strain stimulated the secretion of TGF-β1 into the supernatant of VSMCs. After exposed to the strain, the expressions of contractile phenotype markers, including smooth muscle protein 22 alpha, alpha-actin, and calponin, and phosphorylated Smad2, phosphorylated Smad5, SIRT6 and c-fos were up-regulated in VSMCs by western blot and immunofluorescence. And the expression of intercellular-adhesion molecule-1 (ICAM-1) was also increased detected by flow cytometry. The strained-induced up-regulation of SIRT6 was blocked by a TGF-β1 neutralizing antibody. Furthermore, the effects of strain on VSMCs were abrogated by SIRT6-specific siRNA transfection via the suppression c-fos and ICAM-1. These results suggest that SIRT6 may play a critical role in the regulation of VSMC differentiation in response to the cyclic strain.  相似文献   

19.
AIDS-associated Kaposi's sarcoma (KS) is a cytokine-mediated tumor, at least in the early stages of this disease; however, there is at present no definitive consensus regarding the exact role of intracellular signaling pathways involved in growth of KS cells. We found that KS cell growth factors oncostatin M, sIL-6R/IL-6, TNFalpha, and IL-1beta all activate ERK1/2, and selective blockage of this kinase by PD98059 resulted in a profound inhibition of the cytokine-induced KS cell growth. Concurrently with activation of ERK1/2, these growth factors phosphorylated and activated p38MAPK. The selective inhibition of p38MAPK by SB203580 prominently enhanced the cytokine-induced proliferation of KS cells, thereby indicating that p38MAPK has a negative feedback on mitogenic signals. As these KS cell growth factors lead to simultaneous activation of ERK1/2 and p38MAPK signaling pathways, the concerted effects of these kinase activities may well determine the intensity of cellular proliferative responses to these growth factors.  相似文献   

20.
During restenosis following arterial injury, vascular smooth muscle cells (VSMCs) form a neointimal layer in arteries by changing from a differentiated, contractile phenotype to a dedifferentiated, migratory, and proliferative phenotype. Several growth factors, cytokines, and extracellular matrix components released following injury have been implicated in these phenotypic changes. We have recently detected the expression of laminin-5, an ECM protein found predominantly in epithelial tissues, in the arterial vasculature. Here we report that ln-5 expression by VSMC is upregulated by platelet-derived growth factor (PDGF-BB), epidermal growth factor, basic fibroblast growth factor, and transforming growth factor-beta1. Adhesion to ln-5 specifically enhances PDGF-BB-stimulated VSMC proliferation and migration. PD98059, a specific inhibitor of the ERK1/2 members of the Mitogen Activated Protein kinase family, increases both VSMC adhesion to ln-5 and blocks PDGF-BB-stimulated VSMC migration on ln-5. These results suggest that adhesion to ln-5 mediates a PDGF-BB-stimulated VSMC response to vascular injury via an ERK1/2 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号