首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The extracytoplasmic-function (ECF) family of sigma factors comprises a large group of proteins required for synthesis of a wide variety of extracytoplasmic products by bacteria. Residues important for core RNA polymerase (RNAP) binding, DNA melting, and promoter recognition have been identified in conserved regions 2 and 4.2 of primary sigma factors. Seventeen residues in region 2 and eight residues in region 4.2 of an ECF sigma factor, PvdS from Pseudomonas aeruginosa, were selected for alanine-scanning mutagenesis on the basis of sequence alignments with other sigma factors. Fourteen of the mutations in region 2 had a significant effect on protein function in an in vivo assay. Four proteins with alterations in regions 2.1 and 2.2 were purified as His-tagged fusions, and all showed a reduced affinity for core RNAP in vitro, consistent with a role in core binding. Region 2.3 and 2.4 mutant proteins retained the ability to bind core RNAP, but four mutants had reduced or no ability to cause core RNA polymerase to bind promoter DNA in a band-shift assay, identifying residues important for DNA binding. All mutations in region 4.2 reduced the activity of PvdS in vivo. Two of the region 4.2 mutant proteins were purified, and each showed a reduced ability to cause core RNA polymerase to bind to promoter DNA. The results show that some residues in PvdS have functions equivalent to those of corresponding residues in primary sigma factors; however, they also show that several residues not shared with primary sigma factors contribute to protein function.  相似文献   

7.
8.
9.
10.
Genome sequence analysis of the bacterium Xylella fastidiosa revealed the presence of two genes, named rpoE and rseA, predicted to encode an extracytoplasmic function (ECF) sigma factor and an anti-sigma factor, respectively. In this work, an rpoE null mutant was constructed in the citrus strain J1a12 and shown to be sensitive to exposure to heat shock and ethanol. To identify the X. fastidiosa sigma(E) regulon, global gene expression profiles were obtained by DNA microarray analysis of bacterial cells under heat shock, identifying 21 sigma(E)-dependent genes. These genes encode proteins belonging to different functional categories, such as enzymes involved in protein folding and degradation, signal transduction, and DNA restriction modification and hypothetical proteins. Several putative sigma(E)-dependent promoters were mapped by primer extension, and alignment of the mapped promoters revealed a consensus sequence similar to those of ECF sigma factor promoters of other bacteria. Like other ECF sigma factors, rpoE and rseA were shown to comprise an operon in X. fastidiosa, together with a third open reading frame (XF2241). However, upon heat shock, rpoE expression was not induced, while rseA and XF2241 were highly induced at a newly identified sigma(E)-dependent promoter internal to the operon. Therefore, unlike many other ECF sigma factors, rpoE is not autoregulated but instead positively regulates the gene encoding its putative anti-sigma factor.  相似文献   

11.
12.
13.
Sigma factors in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0  
  相似文献   

14.
We have previously established a two-plasmid system in Escherichia coli for identification of promoters recognized by RNA polymerase containing a heterologous sigma factor. Attempts to optimize this system for identification of promoters recognized by RNA polymerase containing E. coli extracytoplasmic stress response sigma(E) failed owing to high toxicity of the expressed rpoE. A new system for identification of sigma(E)-cognate promoters was established, and verified using the two known sigma(E)-dependent promoters, rpoEp2 and degPp. Expression of the sigma(E)-encoding rpoE gene was under the control of the AraC-dependent P(BAD) promoter. A low level of arabinose induced a non-toxic, however, sufficient level of sigma(E) to interact with the core enzyme of RNA polymerase. Such an RNA polymerase holoenzyme recognized both known sigma(E)-dependent promoters, rpoEp2 and degPp, which were cloned in the compatible promoter probe plasmid, upstream of a promoterless lacZ alpha reporter gene. This new system has proved to be useful for identification of E. coli sigma(E)-cognate promoters. Moreover, the system could be used for identification of ECF sigma-cognate promoters from other bacteria.  相似文献   

15.
16.
17.
18.
Under iron-limiting conditions, Pseudomonas aeruginosa produces a siderophore called pyoverdine. Pyoverdine is secreted into the extracellular environment where it chelates iron, and the resulting ferri-pyoverdine complexes are transported back into the bacteria by a cell surface receptor protein FpvA. Pyoverdine also acts as a signalling molecule inducing the production of three secreted virulence factors. Binding of ferri-pyoverdine to FpvA transduces a signal to the periplasmic part of the membrane-spanning antisigma factor FpvR. The signal is transmitted to the cytoplasmic part of FpvR, which controls the activity of an extracytoplasmic family (ECF) sigma factor protein PvdS. This results in the production of the virulence factors pyoverdine, exotoxin A and PrpL endoprotease. Here, we show that a second divergent branch of this signalling pathway regulates the production of the FpvA protein. FpvR negatively regulates the activity of a second ECF sigma factor, FpvI, which is required for the synthesis of FpvA, and the presence of ferri-pyoverdine greatly increases the activity of FpvI so that production of FpvA is induced. To the best of our knowledge, this is the first example of a branched signalling system of this sort and the first example of an antisigma factor protein (FpvR) that directly regulates the activities of two different ECF sigma factor proteins (PvdS and FpvI).  相似文献   

19.
The opportunistic pathogen Burkholderia cenocepacia produces the yellow-green fluorescent siderophore, pyochelin. To isolate mutants which do not produce this siderophore, we mutagenized B. cenocepacia with the transposon mini-Tn5Tp. Two nonfluorescent mutants were identified which were unable to produce pyochelin. In both mutants, the transposon had integrated into a gene encoding an orthologue of CysW, a component of the sulfate/thiosulfate transporter. The cysW gene was located within a putative operon encoding other components of the transporter and a polypeptide exhibiting high homology to the LysR-type regulators CysB and Cbl. Sulfate uptake assays confirmed that both mutants were defective in sulfate transport. Growth in the presence of cysteine, but not methionine, restored the ability of the mutants to produce pyochelin, suggesting that the failure to produce the siderophore was the result of a depleted intracellular pool of cysteine, a biosynthetic precursor of pyochelin. Consistent with this, the wild-type strain did not produce pyochelin when grown in the presence of lower concentrations of sulfate that still supported efficient growth. We also showed that whereas methionine and certain organosulfonates can serve as sole sulfur sources for this bacterium, they do not facilitate pyochelin biosynthesis. These observations suggest that, under conditions of sulfur depletion, cysteine cannot be spared for production of pyochelin even under iron starvation conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号