首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the uptake of aluminum (Al) and transport to shoots in two inbred maize lines (Zea mays L., VA-22 and A(4/67)) differing in Al tolerance. Seedlings were grown for 7 days in hydroponic culture with nutrient solution that contained 0, 240, 360, and 480muM Al at pH 4.2. After 7 days of exposure to Al, roots of sensitive maize line (A(4/67)) plants accumulated 2-2.5 times more Al than roots of tolerant line (VA-22) plants. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that the tolerant line retained higher concentrations of Ca(2+), Mg(2+), and K(+) compared with the sensitive line. In response to Al treatment, proline (Pro) concentration increased three-fold in roots of tolerant plants, while a slight increase was observed in roots of sensitive-line plants. A substantial carbon surplus (two-fold increase) was observed in roots of the Al-tolerant maize line. Carbohydrate concentration remained almost unchanged in roots of Al-sensitive line plants. Al treatment triggered the enhancement of lipid peroxidation in the sensitive line, while no change in lipid peroxidation level was observed in the tolerant maize line. These data provide further support to the hypothesis that a mechanism exists that excludes Al from the roots of the tolerant maize line, as well as an internal mechanism of tolerance that minimizes accumulation of lipid peroxides through a higher Pro and carbohydrate content related to osmoregulation and membrane stabilization.  相似文献   

2.
Aluminum (Al) affects numerous physiological processes in plants. However, Al tolerance mechanisms mediated by increased synthesis of organic acids (OAs) have been outlined recently. In this study, we examined the role of OAs in the short (1–8 h) and long-term (4 days) Al tolerance in maize seedlings. Exposure to Al stress for 4 days results in a rapid inhibition of root growth. Al induced morphological changes in the maize roots, especially at a higher solution of Al concentration (1,000 μM Al). The increase in Al accumulation in roots, including strongly elevated levels of Al accumulated in root cell walls suggests that Al tolerance in maize is mediated in part by higher accumulation of Al in the roots. The enhanced citrate exudation, which was only observed at 1,000 μM Al may lead to detoxification of Al by formation of OA–Al complexes in the root apoplast. This mechanism has been suggested to play a significant role in Al resistance response in maize. The short-term responses underlying internal detoxification via OA-chelators were also investigated. Succinate, malate, citrate and total root OA contents decreased markedly, 2 h after the Al exposure. At 4 and 8 h time points, OA contents increased or remained unchanged, except for that of malate which decreased. The level of OAs in shoots, on the other hand, showed alterations that were less pronounced in response to Al. Specifically, the citrate and total OA concentrations significantly increased at 4 h, but showed a pronounced decrease at the 8 h time point. Based on our findings, we propose that multiple responses, including Al exclusion by Al accumulation in root cells and citrate efflux, may contribute towards higher Al resistance in maize. The rapid OA changes in responses to short-term Al treatment may not be responsible for Al tolerance. However, increased OA synthesis observed in this study may be involved in diminishing the stress triggered by Al. The molecular aspects underlying Al resistance mechanism via Al-induced expression of the enzymes catalyzing OA synthesis and metabolism remain to be elucidated.  相似文献   

3.
A study was conducted to examine aluminum (Al) exclusion by roots of two differentially tolerant soybean (Glycine max L. Merr.) lines, Pl-416937 (Al-tolerant) and Essex (Al-sensitive). Following exposure to 80μM Al for up to 2 h, roots were rinsed with a 10 mM potassium citrate solution and rapidly dissected to allow estimation of intracellular Al accumulation in morphologically distinct root regions. Using 10 min exposures to 300μM 15NO3 and dissection, accompanying effects on NO3 uptake were measured. With Al exposures of 20 min or 2 h, there was greater Al accumulation in all root regions of Essex than in those of Pl-416937. The genotypic difference in Al accumulation was particularly apparent at the root apex, both in the tip and in the adjacent root cap and mucilage. Exposure of roots to Al inhibited the uptake of 15NO3 to a similar extent in all root regions. The results are consistent with Al exclusion from cells in the root apical region being an important mechanism of Al tolerance.  相似文献   

4.
The seedlings of two soybean genotypes, Al-tolerant PI 416937 (PI) and Al-sensitive Young, were cultured in the solution containing 0, 25 or 50 μM Al (AlCl3·6H2O) for 24, 36 or 48 h in the hydroponics, and the calluses induced from two genotypes were cultured in medium containing 0, 10, 50 or 100 μM Al for 5, 10 or 15 days, respectively. The effects of Al on growth of seedling roots and calluses, antioxidant enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) and lipid peroxidation were investigated. Under Al stress, PI was more tolerant to Al toxicity than Young at both intact plant and tissue levels and lower concentrations of Al significantly stimulated the root and callus growth of PI. Al application enhanced the activities of SOD and POD and lipid peroxidation in both roots and calluses of two genotypes. Although the differences of SOD activities between two genotypes in response to Al toxicity depended on Al concentration and durations of treatment, SOD activities in the roots of PI were higher than those in the roots of corresponding Young in the presence of Al for 36 or 48 h. Meanwhile, the POD activities in PI roots increased as the Al levels and durations of treatment increased, significantly higher than those in the corresponding Young roots. Moreover, Al-treated PI had significantly lower lipid peroxidation than Young at both root and callus levels. These results suggest that the enhanced antioxidant-related enzyme activities and reduced lipid peroxidation in PI might be one of Al-tolerant mechanisms.  相似文献   

5.
Al-induced release of Al-chelating ligands (primarily organic acids) into the rhizosphere from the root apex has been identified as a major Al tolerance mechanism in a number of plant species. In the present study, we conducted physiological investigations to study the spatial and temporal characteristics of Al-activated root organic acid exudation, as well as changes in root organic acid content and Al accumulation, in an Al-tolerant maize (Zea mays) single cross (SLP 181/71 x Cateto Colombia 96/71). These investigations were integrated with biophysical studies using the patch-clamp technique to examine Al-activated anion channel activity in protoplasts isolated from different regions of the maize root. Exposure to Al nearly instantaneously activated a concentration-dependent citrate release, which saturated at rates close to 0.5 nmol citrate h(-1) root(-1), with the half-maximal rates of citrate release occurring at about 20 microM Al(3+) activity. Comparison of citrate exudation rates between decapped and capped roots indicated the root cap does not play a major role in perceiving the Al signal or in the exudation process. Spatial analysis indicated that the predominant citrate exudation is not confined to the root apex, but could be found as far as 5 cm beyond the root cap, involving cortex and stelar cells. Patch clamp recordings obtained in whole-cell and outside-out patches confirmed the presence of an Al-inducible plasma membrane anion channel in protoplasts isolated from stelar or cortical tissues. The unitary conductance of this channel was 23 to 55 pS. Our results suggest that this transporter mediates the Al-induced citrate release observed in the intact tissue. In addition to the rapid Al activation of citrate release, a slower, Al-inducible increase in root citrate content was also observed. These findings led us to speculate that in addition to the Al exclusion mechanism based on root citrate exudation, a second internal Al tolerance mechanism may be operating based on Al-inducible changes in organic acid synthesis and compartmentation. We discuss our findings in terms of recent genetic studies of Al tolerance in maize, which suggest that Al tolerance in maize is a complex trait.  相似文献   

6.

Aims

Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance.

Methods

112 Kenyan maize accessions were phenotyped for Al tolerance in solution culture. Several Al tolerance-related parameters including relative net root growth (RNRG), root apex Al accumulation, Al-activated root organic acid exudation, and expression of the maize Al tolerance gene, ZmMATE1, were used to classify Kenyan maize accessions.

Results

Based on RNRG, 42 %, 28 %, and 30 % of the lines were classified as highly tolerant, moderately tolerant and sensitive, respectively. Tolerant accessions accumulated less Al in their root apices compared to sensitive lines. The Kenyan maize line, CON 5, and the Brazilian standard for tolerance, Cateto, exhibited the greatest Al tolerance based on RNRG, but CON 5 had only about 50 % of ZmMATE1 gene expression relative to Cateto. CON 5 also had low root apex Al content and high citrate exudation, suggesting that it may employ a citrate transporter other than ZmMATE1.

Conclusions

We identified a very Al tolerant Kenyan maize line whose Al tolerance may be based in part on a novel tolerance gene. The maize lines identified in this study are useful germplasm for the development of varieties suitable for agriculture on acid soils in Kenya.
  相似文献   

7.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

8.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   

9.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

10.
The common sorrel, Rumex acetosa L. is well adapted to acid mineral soils with high availability of phytotoxic Al species. The mechanisms of Al resistance in this species are not established. Our goal was to assess the possible implications of organic acids and phenolic substances in Al detoxification in roots and shoots of this plant. R. acetosa plants were exposed in nutrient solution (pH 4.3) to a non-growth reducing Al concentration of 50 μM Al for 5 days. Exclusion of Al from root tips was visualized by haematoxylin staining. Tissue Al and Ca concentrations were analysed by ICP ES. Root and shoot concentrations of organic acids and phenolic substances were analysed by HPLC. A time-dependent (model II type) Al exclusion pattern in root tips was observed. Nonetheless, high Al concentrations accumulated in roots (1170 μg/g) and shoots (275 μg/g). Aluminium supply enhanced root citrate concentrations but decreased shoot organic acid levels. Aluminium induced high levels of anthraquinone in roots and of catechol, catechin and rutin in shoots. Aluminium resistance in R. acetosa implies both exclusion of Al from root tips and tolerance to high Al tissue concentrations. Citrate in roots and phenolics in shoots may bind Al in non-toxic form. Anthraquinones, as strong antioxidants, may play a role in a general defence response to the root stress.  相似文献   

11.
铝胁迫下水稻幼苗根系的生理特性   总被引:3,自引:1,他引:2  
以4叶1心期的水稻幼苗为材料,在水培条件下,研究了0、0.5和7.5 mmol·L-1Al胁迫下水稻Al敏感品种IR24、耐Al品种金优725和两优培九幼苗根系的生理特性.结果表明:在7.5 mmol·L-1Al胁迫下,耐Al品种根系活力下降幅度远小于Al敏感品种,Al敏感品种H2O2含量较Al耐性品种高.在Al胁迫下,各品种根系线粒体中CAT的增加幅度较小;IR24和金优725根系的线粒体POD活性随Al胁迫浓度的增加先升后降,两优培九POD活性则呈增加趋势;IR24根系线粒体APX活性随Al胁迫浓度的增加先升后降,金优725和两优培九的线粒体APX活性则呈上升趋势.随Al胁迫浓度的增加,各品种根系谷氨酸含量先增加后下降,柠檬酸含量下降,磷酸烯醇式丙酮酸含量增加.Al敏感品种抗氰呼吸速率占总呼吸的比率较耐Al品种明显降低.  相似文献   

12.
Aluminum (Al) uptake in roots of wheat nearisogenic lines having differing tolerances to aluminium toxicity was studied using roots and root segments immersed in a nutrient solution at a controlled pH and temperature. At low Al concentrations a mechanism preventing root tips from accumulating too much Al was observed in an Al-tolerant isoline and a BH1146 euploid. This mechanism was more efficient when divalent cations of calcium or magnesium were present in the nutrient medium. Al accumulation steadily increased in root tips of the Al-sensitive wheat isoline during all 24 h of incubation, and the presence of divalent cations in the medium even increased Al concentration in root tissue. However, at higher Al concentrations in the medium the mechanism preventing the root tips of Al-tolerant genotypes from accumulating too much Al was not observed, and in effect Al concentration in root tips of both Al-tolerant and Al-sensitive isolines increased. It is concluded that genetical factors are located on the long arm of chromosome 2D from the BH1146 euploid that control the mechanism preventing root apical meristems from accumulating too much Al at low Al concentrations in the medium. However, there must be other genetical factors also located on this chromosome segment that control Al detoxication in root tips of Al-tolerant lines at higher external Al concentrations.  相似文献   

13.
Aluminium (Al) irreversibly inhibits root growth in sensitive, but not in some tolerant genotypes. To better understand tolerance mechanisms, seedlings from tolerant ('Barbela 7/72' line) and sensitive ('Anahuac') Triticum aestivum L. genotypes were exposed to AlCl(3) 185 μM for: (a) 24 h followed by 48 h without Al (recovery); (b) 72 h of continuous exposure. Three root zones were analyzed (meristematic (MZ), elongation (EZ) and hairy (HZ)) for callose deposition, reserves (starch and lipids) accumulation, endodermis differentiation and tissue architecture. Putative Al-induced genotoxic or cytostatic/mytogenic effects were assessed by flow cytometry in root apices. Tolerant plants accumulated less Al, presented less root damage and a less generalized callose distribution than sensitive ones. Starch and lipid reserves remained constant in tolerant roots but drastically decreased in sensitive ones. Al induced different profiles of endodermis differentiation: differentiation was promoted in EZ and HZ, respectively, in sensitive and tolerant genotypes. No ploidy changes or clastogenicity were observed. However, differences in cell cycle blockage profiles were detected, being less severe in tolerant roots. After Al removal, only the 'Barbela 7/72' line reversed Al-induced effects to values closer to the control, mostly with respect to callose deposition and cell cycle progression. We demonstrate for the first time that: (a) cell cycle progression is differently regulated by Al-tolerant and Al-sensitive genotypes; (b) Al induces callose deposition >3 cm above root apex (in HZ); (c) callose deposition is a transient Al-induced effect in tolerant plants; and (d) in HZ, endodermis differentiation is also stimulated only in tolerant plants, probably functioning in tolerant genotypes as a protective mechanism in addition to callose.  相似文献   

14.
We investigated the uptake and distribution of Al in root apices of near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at a single locus (Alt1: aluminum tolerance). Seedlings were grown in nutrient solution that contained 100 [mu]M Al, and the roots were subsequently stained with hematoxylin, a compound that binds Al in vitro to form a colored complex. Root apices of Al-sensitive genotypes stained after short exposures to Al (10 min and 1 h), whereas apices of Al-tolerant seedlings showed less intense staining after equivalent exposures. Differential staining preceded differences observed in either root elongation or total Al concentrations of root apices (terminal 2-3 mm of root). After 4 h of exposure to 100 [mu]M Al in nutrient solution, Al-sensitive genotypes accumulated more total Al in root apices than Al-tolerant genotypes, and the differences became more marked with time. Analysis of freeze-dried root apices by x-ray microanalysis showed that Al entered root apices of Al-sensitive plants and accumulated in the epidermal layer and in the cortical layer immediately below the epidermis. Long-term exposure of sensitive apices to Al (24 h) resulted in a distribution of Al coinciding with the absence of K. Quantitation of Al in the cortical layer showed that sensitive apices accumulated 5- to 10-fold more Al than tolerant apices exposed to Al solutions for equivalent times. These data are consistent with the hypothesis that Alt1 encodes a mechanism that excludes Al from root apices.  相似文献   

15.
采用水培试验,研究了铝胁迫下两个胡枝子品种根尖产生胼胝质的变化规律及影响因素。结果表明,两个品种的根尖铝吸收量与胼胝质形成量呈正比例关系。品种间差异主要是在根尖0—0.5 cm处。敏感品种胼胝质形成量同铝吸收量的变化趋势相一致,而耐性品种则在铝处理6 h时出现一个高峰值后下降。去除铝胁迫后,耐性品种胼胝质形成量并不显著减少。与单独铝处理相比,阴离子通道抑制剂苯甲酰甲醛加铝处理对两个品种胼胝质形成无影响;尼氟灭酸加铝处理抑制敏感品种胼胝质的形成,对耐性品种无影响;蒽-9-羧酸加铝处理显著抑制两个品种的胼胝质形成。另外,抑制剂2-去氧-D-葡萄糖加铝共同处理与单独铝处理相比,敏感品种的胼胝质形成量显著降低,耐性品种无影响。甘露醇对两个品种胼胝质形成的影响无显著差别。镧处理下胼胝质的形成量是耐性品种显著高于敏感品种,铝、镧同时处理胼胝质的形成量最高。敏感品种胼胝质形成处理间无差别。总之,耐性品种在铝胁迫下胼胝质形成与有机酸分泌可能存在一定的协调关系;铝胁迫下胼胝质形成是敏感指标;在一定条件下,特别是有机酸分泌前胼胝质的形成可能具有一定抗性意义;铝诱导胼胝质的形成受多种外界因素(浓度、时间、有机酸分泌,渗透压等)的影响。  相似文献   

16.
Zhang G  Taylor GJ 《Plant physiology》1989,91(3):1094-1099
Uptake of aluminum (Al) by excised roots of two Al-tolerant cultivars and two Al-sensitive cultivars of Triticum aestivum L. (wheat) was biphasic, with a rapid phase of uptake in the first 30 minutes followed by a linear phase of uptake up to 180 minutes. At the end of the uptake period, higher concentrations of Al were found in roots of the Al-sensitive cultivars (Neepawa and Scout-66) than in the Al-tolerant cultivars (Atlas-66 and PT-741), but differences were small. Experiments testing the effectiveness of several desorption agents demonstrated that citric acid was most effective in desorption of loosely bound Al (the putative apoplasmic compartment) followed by others in the order tartaric acid > EDTA > CaSO4 = ScCl3. In all cultivars, 30 minutes of desorption with citric acid depleted the rapidly exchanging, putative apoplasmic compartment, although some tightly bound Al remained in that compartment. The relationship between Al remaining after desorption and time in the uptake medium was nearly linear and no distinction was observed between Al-tolerant and Al-sensitive cultivars. However, uptake of Al by the Al-tolerant cultivars was increased by treatment with the protonophore 2,4-dinitrophenol (DNP), while uptake of Al by Al-sensitive cultivars was relatively unaffected. Such results suggest the possible involvement of an active exclusion mechanism in Al-tolerant cultivars of T. aestivum.  相似文献   

17.
The geometric and energetic characteristics of root surfaces of two wheat (Triticum L.) varieties, Al tolerant (Inia 66/16) and Al sensitive (Henika), were estimated from experimental water vapor adsorption–desorption data. Roots stressed for around 1 week at pH 4 without and with a toxic aluminium level (0.741 mol m–3) were studied at the tillering and shooting stages. Roots grown continuously at pH 7 were taken as control. The surface properties of the pH 4 stressed roots were apparently the same as those of the control roots whatever the root age. For the roots of both varieties, the surface area and total micropore volume increased markedly after aluminium treatment. The average micropore radius increased significantly for the sensitive wheat, whereas it increased only slightly for the resistant one. Under Al treatment the number of large pores increased while small pores were fewer for both plants, indicating a possible alteration of the build-up of root tissue. The root surface pores were fractal. The fractal dimension of the sensitive wheat roots decreased under Al treatment, whereas for the resistant wheat this remained apparently unchanged. The adsorption energy distribution functions had different shapes for the sensitive and the resistant wheat varieties: the sensitive variety had greater number of high energy adsorption centers, which implies that the root tolerance on Al stress may be connected with lower polarity of the surface.  相似文献   

18.
To investigate the molecular mechanisms of Al toxicity, cross-species cDNA array approach was employed to identify expressed sequence tags (ESTs) regulated by Al stress in root tips of Al-tolerant maize (Zea mays) genotype Cat100-6 and Al-sensitive genotype S1587-17. Due to the high degree of conservation observed between sugarcane and maize, we have analyzed the expression profiling of maize genes using 2 304 sugarcane (ESTs) obtained from different libraries. We have identified 85 ESTs in Al stressed maize root tips with significantly altered expression. Among the up-regulated ESTs, we have found genes encoding previously identified proteins induced by Al stress, such as phenyl ammonia-lyase, chitinase, Bowman-Birk proteinase inhibitor, and wali7. In addition, several novel genes up-and downregulated by Al stress were identified in both genotypes.  相似文献   

19.
Ma B  Gao L  Zhang H  Cui J  Shen Z 《Plant cell reports》2012,31(4):687-696
The effects of aluminum (Al) on root elongation, lipid peroxidation, hydrogen peroxide (H2O2) accumulation, antioxidant levels, antioxidant enzymatic activity, and lignin content in the roots of the Al-tolerant rice variety azucena and the Al-sensitive variety IR64 were investigated. Treatment with Al induced a greater decrease in root elongation and a greater increase in H2O2 and lipid peroxidation as determined by the total thiobarbituric acid-reactive substance (TBARS) level in IR64 than in azucena. Azucena had significantly higher levels of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase GSH POD activity compared with IR64. The concentrations of reduced glutathione (GSH) and ascorbic acid, and the GSH/GSSG ratio (reduced vs. oxidized glutathione) were also higher in azucena than in IR64 in the presence of Al. The addition of 1 mg/L GSH improved root elongation in both varieties and decreased H2O2 production under Al stress. By contrast, treatment with buthionine sulfoximine, a specific inhibitor of GSH synthesis, decreased root elongation in azucena and stimulated H2O2 production in both varieties. Moreover, Al treatment significantly increased the cytoplasmic activity of peroxidase (POD) as well as the levels of POD bound ionically and covalently to cell walls in the Al-sensitive variety. The lignin content was also increased. Treatment with exogenous H2O2 also increased the lignin content and decreased root elongation in IR64. These results suggest that Al induces lignification in the roots of Al-sensitive rice varieties, probably through an increase in H2O2 accumulation.  相似文献   

20.
Recent research from our laboratory indicates that aluminium (Al) and calcium (Ca) transport interactions may play an important role in the mechanisms of Al phytotoxicity. In this study, we investigated the effects of Al on Ca2+ transport in intact roots of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). We used both a vibrating Ca2+-microelectrode technique and 45Ca2+ to monitor Ca2+ influx in intact roots. Root apical Ca2+ uptake was immediately inhibited, when roots were exposed to Al levels that ultimately decreased root growth in Al-sensitive Scout 66. The Al-tolerant cultivar was able to resist this Al inhibition of Ca2+ uptake, and to resist Al inhibition of 45Ca2+ translocation from roots to shoots. We also studied Ca2+ transport in right-side out plasmalemma vesicles isolated from roots of Al-sensitive and tolerant wheat cultivars. Calcium influx into the vesicles was mediated by a voltage-gated Ca2+ channel. Aluminium blocks the Ca2+ channel equally well in the plasmalemma vesicles isolated from Al-sensitive and Al-tolerant wheat roots. The results indicate that the differential response observed in intact roots is not due to differences in Ca2+ channels. The Al-tolerant wheat cultivar may have an ability to reduce Al3+ activity in the rhizosphere, thus reducing the Al-inhibition of Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号