首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report here the cloning and sequence analysis of cDNAs for a pair of closely related proteins from soybean (Glycine max [L.] Merr. cv. Williams 82) stems. Both proteins are abundant in soluble extracts of seedling stems but not of roots. One of these proteins (M r=28 kDa) is also foundd in the cell wall fraction of stems and actumulates there when seedlings are exposed to mild water deficit for 48 h. The mRNA for these proteins is most abundant in the stem region which contains dividing cells, less abundant in elongating and mature stem cells, and rare in roots. Using antiserum against the 28 kDa protein, we isolated cDNA clones encoding it and an antigenically related 31 kDa protein. The two cDNAs are 80% homologous in nucleotide and amino acid coding sequence. The predicted proteins have similar hydropathy profiles, and contain putative NH2-terminal signal sequences and a single putative N-linked glycosylation site. The two proteins differ significantly in calculated pI (28 kDa=8.6; 31 kDa=5.8), and the charge difference is demonstrated on two-dimensional gels. The proteins described here may function as somatic storage proteins during early seedling development, and are closely related to glycoproteins which accumulate in vacuoles of paraveinal mesophyll cells of fully expanded soybean leaves when plants are depodded.  相似文献   

4.
The phenotypic changes in the root system of Arabidopsis thaliana seedlings in transgenic lines with overexpression and suppressed gene expression of serine-threonine protein kinase KIN10, under conditions of energy shortage and under normal conditions, were shown. The normal growth and development of KIN10 overexpressing plants under energy deficiency conditions were detected. The significant inhibition of the development of these plant lines was observed under normal conditions. The levels of KIN10 gene expression under normal conditions in different organs of Arabidopsis thaliana, particularly in the roots, stems, leaves and flowers were analyzed. The highest-level expression of the gene was found in the leaves.  相似文献   

5.
Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an alternative to external applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant deficient in carotenoid biosynthesis (vp 5) were used to reduce the endogenous ABA content in the growing zones of the primary root and shoot at low water potentials. Experiments were performed on 30 to 60 hour old seedlings that were transplanted into vermiculite which had been preadjusted to water potentials of approximately −1.6 megapascals (roots) or −0.3 megapascals (shoots). Growth occurred in the dark at near-saturation humidity. Results of experiments using the inhibitor and mutant approaches were very similar. Reduced ABA content by either method was associated with inhibition of root elongation and promotion of shoot elongation at low water potentials, compared to untreated and wild-type seedlings at the same water potential. Elongation rates and ABA contents at high water potential were little affected. The inhibition of shoot elongation at low water potential was completely prevented in fluridone-treated seedlings during the first five hours after transplanting. The results indicate that ABA accumulation plays direct roles in both the maintenance of primary root elongation and the inhibition of shoot elongation at low water potentials.  相似文献   

6.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized.  相似文献   

7.
8.
Transfer of soybean seedlings to low-water-potential vermiculite (w = –0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205–214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealted that pGE23 has high homology with -tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of -tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.  相似文献   

9.
10.
11.
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.  相似文献   

12.
13.
High performance liquid chromatography analysis of different parts of Sclerotium rolfsii-infected and healthy seedlings of chickpea (Cicer arietinum) was carried out to examine the status of phenolic compounds. Three major peaks that appeared consistently were identified as gallic, vanillic and ferulic acids. Gallic acid concentrations were increased in the leaves and stems of infected plants compared to healthy ones. Vanillic acid detected in stems and leaves of healthy seedlings was not detected in infected seedlings. There was a significant increase of ferulic acid in those stem portions located above the infected collar region compared to minimal amounts in the roots of healthy seedlings. In vitro studies of ferulic acid showed significant antifungal activity against S. rolfsii. Complete inhibition of mycelial growth was observed with 1000 g of ferulic acid/ml. Lower concentrations (250, 500 and 750 g/ml) were also inhibitory and colony growth was compact in comparison with the fluffy growth of normal mycelium. Higher amounts of phenolics were found in the stems and leaves of S. rolfsii-infected seedlings in comparison to the healthy ones. A role for ferulic acid in preventing infections by S. rolfsii in the stems and leaves of chickpea plants above the infection zone is therefore feasible.  相似文献   

14.
Summary Fraxinus pennsylvanica Marsh. seedlings that were 150 days old adapted well to flooding of soil with stagnant water for 28 days. Early stomatal closure, followed by reopening as well as hypertrophy of lenticels and formation of adventitious roots on submerged portions of stems appeared to be important adaptations for flood tolerance. Leaf water potential (1) was consistently higher in flooded than in unflooded seedlings, indicating higher leaf turgidity in the former. This was the result of (1) early reduction in transpiration associated with stomatal closure, and (2) subsequently increased absorption of water by the newly-formed adventitious roots as stomata reopened and transpiration increased. Waterlogging of soil was followed by large increases in ethylene content of stems, both below and above the level of submersion. Formation of hypertrophied lenticels and adventitious roots on flooded plants was correlated with increased ethylene production. However, the involvement of various compounds other than ethylene in inducing morphological changes in flooded plants is also emphasized.Research supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, USA  相似文献   

15.
A lipoxygenase L-4 gene was isolated from a soybean genomiclibrary. The amino acid sequence of lipoxygenase L-4 is highlyhomologous with the partial amino acid sequence of the 94-kDavegetative storage protein, vsp94, found in paraveinal mesophyllcells in the leaves of depodded soybean plants. No L-4 expressionwas observed in maturing seeds. The L-4 gene is highly expressedin the vegetative tissues of young seedlings, including cotyledons,hypocotyls, roots and primary leaves. L-4 expression followedthe same pattern as lipoxygenase activity in cotyledons peaking3 to 5 days after germination, and returning to a basal levelby 9 days after germination. L-4 gene expression was low inthe roots, stems and leaves of 10-week-old plants. Exposureof 4-week-old plants to atmospheric methyl jasmonate increasedL-4 mRNA in leaves. Continuous pod removal from 7-week-old plantsover a 2 week period resulted in dramatic accumulation of L-4mRNA in leaves. Accumulation of the L-4 protein and three otherlipoxygenase fractions in the leaves of depodded plants wasdemonstrated by ion exchange chromatography. These results indicatethat lipoxygenase L-4 is a component of vsp94. (Received May 31, 1993; Accepted August 9, 1993)  相似文献   

16.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

17.
Effect of Salt Stress on Germin Gene Expression in Barley Roots   总被引:10,自引:0,他引:10       下载免费PDF全文
Germin gene expression in barley (Hordeum vulgare L.) seedlings responds to developmental and environmental cues. During seed germination, germin mRNA levels were maximal 2 d after the start of imbibition in control seedlings and declined to low levels by 6 d. When seeds were sown in the presence of 200 mM NaCl, germin mRNA levels were also maximal after 2 d, but NaCl treatment, which slowed seedling growth, prolonged germin gene expression for an additional 1 d. In 4-d-old seedlings, germin mRNA levels were highest in roots and higher in the vascular transition region than in shoots. In roots of 6-d-old seedlings, germin gene expression was regulated by salt shock and plant growth regulators. Induced germin mRNA levels were maximal 8 h after treatment with NaCl, salicylate, methyl salicylate, or methyl jasmonate and 4 h after treatment with abscisic acid and indoleacetic acid. Like germin mRNA, dehydrin mRNA levels were maximal 8 h after NaCl treatment. In contrast, peroxidase mRNA levels declined to less than control levels within 30 min of treatment. Germin gene expression is regulated developmentally by salt stress and by treatments with plant hormones. Since germin is an oxalate oxidase, these result imply that oxalate has important roles in plant development and homeostasis.  相似文献   

18.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号