首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The divergence of premating behavior and morphology plays a primary role in speciation, and an understanding of the genetic architectures of these phenotypes is essential for the evaluation of models of the speciation process. However, our empirical knowledge of the genetics underlying speciation-related traits remains limited. In this article, we argue that a dissection of specific aspects of the genetic architecture of such traits in a comparative context can allow us to rule out some mechanisms of divergence. We discuss these ideas with reference to our investigation of intersexual communication behaviors involved in mate recognition in the Hawaiian cricket genus Laupala. Different species of Laupala sing distinctively and show species-specific acoustic preferences. We focus on the sister species Laupala paranigra and Laupala kohalensis, characterized by differences in these classic courtship phenotypes. We discuss our preliminary results on the directionality of effect of substituted alleles underlying these species differences. We then discuss these results in the context of historical inference, a necessary perspective for testing the genomic predictions made by theories of speciation that focus on evolution of mate recognition systems.  相似文献   

2.
Sexual selection is a powerful evolutionary force shaping mate choice phenotypes, initiating phenotypic shifts resulting in (or reinforcing) population divergence and speciation when such shifts reduce mating probabilities among divergent populations. In the Hawaiian cricket genus Laupala, pulse rate of male calling song, a conspicuous mating signal, differs among species, potentially behaving as a speciation phenotype. Populations of the widespread species Laupala cerasina show variation in pulse rate. We document the degree of population differentiation in three features of calling song: pulse rate, pulse duration, and carrier frequency. All show significant population differentiation, with pulse rate showing the greatest heterogeneity. A Mantel test found no relationship between geographic distance and pulse rate divergence, indicating that a simple model of greater divergence with increasing distance cannot explain the observed pattern of differentiation. We demonstrate that female preference functions for pulse rate are unimodal, and that preference means show significant differentiation among populations. Furthermore, estimates of pulse rate preference correlate significantly with mean pulse rates across populations, indicating song and preference coevolve in a stepwise manner. This correlated divergence between signal and preference suggests that sexual selection facilitates the establishment of sexual isolation, reduced gene flow, and population differentiation, prerequisites for speciation.  相似文献   

3.
The evolution of novel sexual communication systems is integral to the process of speciation, as it discourages gene flow between incipient species. Physical linkage between genes underlying male-female communication (i.e. sexual signals and preferences for them) facilitates both rapid and coordinated divergence of sexual communication systems between populations and reduces recombination in the face of occasional hybridization between diverging populations. Despite these ramifications of the genetic architecture of sexual communication for sexual selection and speciation, few studies have examined this relationship empirically. Previous studies of the closely related Hawaiian crickets Laupala paranigra and Laupala kohalensis have indirectly suggested that many of the genes underlying the difference in pulse rate of male song are physically linked with genes underlying the difference in female preference for pulse rate. Using marker-assisted introgression, we moved 'slow pulse rate' alleles from L. paranigra at five known quantitative trait loci (QTL) underlying male pulse rate into the 'fast pulse rate' genetic background of L. kohalensis and assessed the effect of these loci on female preference. An astounding four out of five song QTL predicted the preferences of female fourth-generation backcrosses, providing direct evidence for the extensive genetic linkage of song and preference in one of the fastest diversifying genera currently known.  相似文献   

4.
Understanding the origin and maintenance of barriers to gene exchange is a central goal of speciation research. Hawaiian swordtail crickets (genus Laupala) represent one of the most rapidly speciating animal groups yet identified. Extensive acoustic diversity, strong premating isolation, and female preference for conspecific acoustic signals in laboratory phonotaxis trials have strongly supported divergence in mate recognition as the driving force behind the explosive speciation seen in this system. However, recent work has shown that female preference for conspecific male calling song does not extend to mate choice at close range among these crickets, leading to the hypothesis that additional sexual signals are involved in mate recognition and premating isolation. Here we examine patterns of variation in cuticular lipids among several species of Laupala from Maui and the Big Island of Hawaii. Results demonstrate (1) a rapid and dramatic evolution of cuticular lipid composition among species in this genus, (2) significant differences among males and females in cuticular lipid composition, and (3) a significant reduction in the complexity of cuticular lipid profiles in species from the Big Island of Hawaii as compared to two outgroup species from Maui. These results suggest that behavioral barriers to gene exchange in Laupala may be composed of multiple mate recognition signals, a pattern common in other cricket species.  相似文献   

5.
The power of sexual selection to drive changes in the mate recognition system through divergence in sexually selected traits gives it the potential to be a potent force in speciation. To know how sexual selection can bring such type of divergence in the genus Drosophila, comparative studies based on intra- and inter-sexual selection are documented in this review. The studies provide evidence that both mate choice and male–male competition can cause selection of trait and preference which thereby leads to divergence among species. In the case of intrasexual selection, various kinds of signals play significant role in affecting the species mate recognition system and hence causing divergence between the species. However, intrasexual selection can bring the intraspecific divergence at the level of pre- and post-copulatory stage. This has been better explained through Hawaiian Drosophila which has been suggested a wonderful model system in explaining the events of speciation via sexual selection. This is due to their elaborate mating displays and some kind of ethological isolation persisting among them. Similarly, the genetic basis of sexually selected variations can provide yet another path in understanding the speciation genetics via sexual selection more closely.  相似文献   

6.
Male courtship songs have two functions in species recognition and intraspecific mate choice. Female preference might thus exert different types of selection pressure on male song traits. We used a combination of acoustic mate choice experiments and statistical analyses to examine how traits of the calling songs of male nightingale grasshoppers,Chorthippus biguttulus , are influenced by different sexual selection pressures. We recorded calling songs of males and tested their attractiveness to females in acoustic mate choice experiments. The attractiveness values were a good estimate of the potential male mating success. In experiments with a pair of males, females copulated significantly more often with the male that had the higher attractiveness value. To detect directional, stabilizing, disruptive or correlative selection acting on male song properties we used linear and nonlinear regressions between male song traits and female response behaviour. Three signal traits were revealed to be under directional selection: song loudness, pause to syllable ratio and the mean duration of gaps within syllables. A nonlinear regression testing for correlative selection showed that a fourth song trait, rhythm, in combination with mean gap duration was also important for female mate choice. With these traits and trait combinations we were able to explain 42% of the variance in attractiveness between males. Since we found no evidence for stabilizing selection, but ample evidence for directional selection, we conclude that selection on the traits examined is related to mate choice mainly in the context of intraspecific sexual selection and probably less so in species recognition. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

7.
A major challenge for studying the role of sexual selection in divergence and speciation is understanding the relative influence of different sexually selected signals on those processes in both intra‐ and interspecific contexts. Different signals may be more or less susceptible to co‐option for species identification depending on the balance of sexual and ecological selection acting upon them. To examine this, we tested three predictions to explain geographic variation in long‐ versus short‐range sexual signals across a 3,500 + km transect of two related Australian field cricket species (Teleogryllus spp.): (a) selection for species recognition, (b) environmental adaptation and (c) stochastic divergence. We measured male calling song and male and female cuticular hydrocarbons (CHCs) in offspring derived from wild populations, reared under common garden conditions. Song clearly differentiated the species, and no hybrids were observed suggesting that hybridization is rare or absent. Spatial variation in song was not predicted by geography, genetics or climatic factors in either species. In contrast, CHC divergence was strongly associated with an environmental gradient supporting the idea that the climatic environment selects more directly upon these chemical signals. In light of recently advocated models of diversification via ecological selection on secondary sexual traits, the different environmental associations we found for song and CHCs suggest that the impact of ecological selection on population divergence, and how that influences speciation, might be different for acoustic versus chemical signals.  相似文献   

8.
Abstract. Female mating behavior plays a fundamental role in the divergent evolution of mate recognition systems that may lead to speciation. Despite this important role, the phenotypic and genetic bases of female mating behavior remain poorly understood. In this study, I examine the shape of the female acoustic preference function and estimate values for pulse rate preference in two species of Hawaiian crickets, Laupala kohalensis and L. paranigra . In addition, I examine how preference differences are inherited in hybrid crosses between these species. Females expressed unimodal preference functions and were generally more attracted to pulse rates characterizing their own species. Unimodal preference functions also characterized F1 and backcross generations, with hybrid females expressing preferences for intermediate pulse rates. Pulse rate preferences segregated in the backcross generation. Mean pulse rate preference matched mean pulse rate in both parental and hybrid generations. Based on F1 hybrids and segregation patterns in backcross females, I show that changes in both signal and receiver components of the mate recognition system are consistent with a multilocus model of change through incremental steps. The results therefore suggest that ancestors of the current species also expressed unimodal preference functions and that changes in acoustic communication signals occurred through shifts in mean pulse rates and pulse rate preferences among populations.  相似文献   

9.
Sexual behaviours often evolve rapidly and are critical for sexual isolation. We suggest that coordinated sexual signals and preferences generate stabilizing selection, favouring the accumulation of many small‐effect mutations in sexual communication traits. Rapid radiation of a sexual behaviour used in signalling, song pulse rate, has been observed in the Hawaiian cricket genus Laupala. Using marker‐assisted introgression, we isolated five known quantitative trait loci (QTL) influencing species‐level differences in pulse rate from one species, L. paranigra, into a closely related species, L. kohalensis. All five QTL were found to have a significant effect on song and appear to be largely additive in backcross introgression lines. Furthermore, all effect sizes were small in magnitude. Our data provide support for the hypothesis that stabilizing selection on sexual signals in Laupala creates genetic conditions favourable to incremental divergence during speciation, through the evolution of alleles of minor rather than major phenotypic effects.  相似文献   

10.
Previous work has suggested that developmental temperature influences expression of the adult male calling song of the cricket, a sexually selected mate recognition signal. The role of developmental temperature in shaping female preference functions, and thus its influence on signal-preference coupling has not been investigated. In this study, the effects of developmental temperature are examined in both males and females of the Hawaiian cricket, Laupala cerasina, to determine the degree of signal-preference matching between male song and female preference due to developmental environment. We found that rearing females in different temperature environments affected adult female acoustic preference functions in the same direction as male calling song, thereby influencing variation in adult reproductive behavior in such a way that male and female components remain coordinated. However, we further demonstrate that for male song, the effect of the rearing environment is not permanent but appears only to exert influence for a period of days. This mid-term temperature effect is distinct from the effect of short-term ambient temperature, which influences song in a matter of minutes and has been well documented. Signal-preference coordination, and sexual selection pressures due to mismatching within natural populations, likely will be influenced by nymphal developmental environments of males and females, as well as by adult singing and preference environments.  相似文献   

11.
Understanding the genetic architecture of traits involved in premating isolation between recently diverged lineages can provide valuable insight regarding the mode and tempo of speciation. The repeated coevolution of male courtship song and female preference across the species radiation of Laupala crickets presents an unusual opportunity to compare the genetic basis of divergence across independent evolutionary histories. Previous studies of one pair of species revealed a polygenic basis (including a significant X chromosome contribution) to quantitative differences in male song and female acoustic preference. Here, we studied interspecific crosses between two phenotypically less-diverged species that represents a phylogenetically independent occurrence of intersexual signalling evolution. We found patterns consistent with an additive polygenic basis to differentiation in both song and preference (n(E) = 5.3 and 5.1 genetic factors, respectively), and estimate a moderate contribution of the X chromosome (7.6%) of similar magnitude to that observed for Laupala species with nearly twice the phenotypic divergence. Together, these findings suggest a similar genetic architecture underlying the repeated evolution of sexual characters in this genus and provide a counterexample to prevailing theory predicting an association between early lineage divergence and sex-linked 'major genes'.  相似文献   

12.
Parsons YM  Shaw KL 《Molecular ecology》2001,10(7):1765-1772
Crickets of the genus Laupala represent one of the many morphologically cryptic groups of insects, with the most closely related species distinguished only by the male calling song. Cryptic groups provide a challenge in determining the genetic boundaries between closely related populations and species. We have addressed the question of species boundaries in the Hawaiian cricket, Laupala, using nuclear DNA patterns sampled by the amplified fragment length polymorphism (AFLP) technique. This method has been used widely by plant researchers to facilitate the rapid assessment of genetic diversity in very closely related species and varieties. The AFLP technique is simple and robust, can be applied to any organism, and overcomes problems associated with cost, development time, information content and reproducibility that can plague other marker systems. Our results support previously hypothesized taxonomic relationships among sympatric populations and suggest close genetic relationships among allopatric, conspecific populations.  相似文献   

13.
Acoustic mating signals are often important as both interspecific prezygotic isolating mechanisms and as sexually selected traits in intraspecific mate choice. Here, we investigate the potential for cricket courtship song to act as an isolating mechanism by assessing divergence between the courtship songs of Gryllus texensis and Gryllus rubens , two broadly sympatric cryptic sister species of field crickets with strong prezygotic isolation via the calling song and little or no postzygotic isolation. We found significant species-level differences in the courtship song, but the song has not diverged to the same extent as the calling song, and considerable overlap remains between these two species. Only two related courtship song characters are sufficiently distinct to play a possible role in prezygotic species isolation.  相似文献   

14.
Determining the mode, or geographical context, of speciation is a critical first step to understanding the evolutionary mechanisms that cause new species to arise. In this study, we estimated phylogenetic relationships in the cerasina species group of the Hawaiian cricket genus Laupala (Orthoptera: Gryllidae) to test competing phylogeographical hypotheses and thus infer the mode of speciation. A previous phylogenetic result based on nuclear sequence data suggested that populations of L. cerasina on the Big Island of Hawaii are the result of two independent colonizations from Maui, implying parallel speciation and convergent song evolution, and contradicting systematic hypotheses based on behavioural and morphological data. We used amplified fragment length polymorphisms to investigate further the relationships among species and populations in the cerasina species group. Results of these analyses provide a robust estimate of phylogenetic relationships and support the phylogeographical history indicated by behavioural and morphological data.  相似文献   

15.
Divergence in mate recognition systems among closely related species is an important contributor to assortative mating and reproductive isolation. Here, we examine divergence in male song traits and female preference functions in three cricket species with songs consisting of long trills. The shape of female preference functions appears to be mostly conserved across species and follows the predictions from a recent model for song recognition. Multivariate preference profiles, combining the pulse and trill parameters, demonstrate selectivity for conspecific pulse rates and high trill duty cycles. The rules for integration across pulse and trill timescales were identical for all three species. Generally, we find greater divergence in male song traits than in associated female preferences. For pulse rate, we find a strong match between divergent male traits and female peak preferences. Preference functions for trill parameters and carrier frequency are similar between species and show less congruence between signal and preference. Differences among traits in the degree of trait–preference (mis)match may reflect the strength of preferences and the potential for linkage disequilibrium, selective constraints and alternative selective pressures, but appear unrelated to selection for mate recognition per se.  相似文献   

16.
Sexually selected traits important in both mate and competitor recognition provide an opportunity to understand the tradeoffs associated with reproductive and competitive interference. When co-occurring species compete over similar resources, selection may promote signal similarity to facilitate competitive interactions in opposition to selection for signal divergence to maintain assortative mating. Bird song provides a classic example of contrasting selection on signal design, because songs function both in mate discrimination and in territorial advertisement. Similarity in songs aids competitor recognition both within and across species, and song convergence or mixing is widespread in the songbirds. Two related mechanisms can maintain mate recognition in the face of song convergence. First, multiple recognition signals, both across and within signaling modalities, provide a basis for mate and competitor discrimination using different sets of cues. Second, stricter female song preferences may allow interspecific male–male competitive communication without compromising female mate discrimination. I suggest that increased understanding of the neurobiology underlying song recognition will provide insight into the relative importance and prevalence of these different mechanisms along a continuum of species divergence.  相似文献   

17.
Shaw KL  Lugo E 《Molecular ecology》2001,10(3):751-759
Based on studies from native Hawaiian Drosophila, a model was proposed to explain sexual isolation and mating asymmetry, from which one could potentially infer the 'direction of evolution'. We examined sexual isolation between allopatric cricket species of the genus Laupala, another endemic Hawaiian insect with an elaborate mating system, to begin to explore the nature of sexual isolation and mating asymmetry in closely related Hawaiian organisms. We studied sexual isolation and mating asymmetry in two contrasts. First, an inter-island comparison, including L. makaio from the older island of Maui and L. paranigra from the younger island of Hawaii, and second, an intra-island (Hawaii) comparison, including L. nigra from the older volcano of Mauna Kea and L. paranigra with a primary distribution on the younger volcanoes of Mauna Loa and Kilauea. We used a 'no-choice' experimental design, pairing individual males and females in homospecific or heterospecific combinations. Several behavioural aspects of courtship (proportion of male singing, latency to male singing, production of spermatophores and courtship initiation speed) were quantified as well as the success or failure of matings. We demonstrate asymmetry in sexual isolation between reciprocal combinations of L. makaio and L. paranigra. This result is examined in light of the differences in courtship behaviour manifest in the experiments with these two species. We did not find evidence of asymmetry in sexual isolation between L. nigra and L. paranigra, although differences in courtship initiation speed were evident between reciprocal combinations of these two species. In addition to the geological argument that species on older islands and older volcanoes give rise to species on younger islands and younger volcanoes, we discuss phylogenetic evidence consistent with these biogeographic hypotheses of relationships among the focal taxa. The patterns of asymmetrical sexual isolation and mating asymmetry are consistent with those found in the native Hawaiian Drosophila.  相似文献   

18.
Female choice based on male secondary sexual traits is well documented, although the extent to which this selection can drive an evolutionary divergence in male traits among populations is less clear. Male field crickets Teleogryllus oceanicus attract females using a calling song and once contacted switch to courtship song to persuade them to mate. These crickets also secrete onto their cuticle a cocktail of long‐chained fatty acids or cuticular hydrocarbons (CHCs). Females choose among potential mates based on the structure of male acoustic signals and on the composition of male CHC profiles. Here, we utilize two naturally occurring mutations that have arisen independently on two Hawaiian islands and render the male silent to ask whether the evolutionary loss of acoustic signalling can drive an evolutionary divergence in the alternative signalling modality, male CHC profiles. QSTFST comparisons revealed strong patterns of CHC divergence among three populations of crickets on the islands of Hawaii, Oahu and Kauai. Contrasts between wild‐type and flatwing males on the islands of Oahu and Kauai indicated that variation in male CHC profiles within populations is associated with the loss of acoustic signalling; flatwing males had a relatively low abundance of long‐chained CHCs relative to the short‐chained CHCs that females find attractive. Given their dual functions in desiccation resistance and sexual signalling, insect CHCs may be particularly important traits for reproductive isolation and ultimately speciation.  相似文献   

19.
Social influences on mate choice are predicted to influence evolutionary divergence of closely related taxa, because of the key role mate choice plays in reproductive isolation. However, it is unclear whether females choosing between heterospecific and conspecific male signals use previously experienced social information in the same manner or to the same extent that they do when discriminating among conspecific mates only. We tested this using two field cricket sister species (Teleogryllus oceanicus and Teleogryllus commodus), in which considerable information is known about the role of male calling song in premating isolation, in addition to the influence of acoustic experience on the development of reproductive traits. We manipulated the acoustic experience of replicate populations of both species and found, unexpectedly, that experience of male calling song during rearing did not change how accurate females were in choosing a conspecific over a heterospecific male song during playback trials. However, females with acoustic experience were considerably less responsive to male song compared with naïve females. Our results suggest that variation in the acoustic environment affects mate choice in both species, but that it may have a limited impact on premating isolation. The fact that social flexibility during interspecific mate discrimination does not appear to operate identically to that which occurs during conspecific mate discrimination highlights the importance of considering the context in which animals exercise socially flexible mating behaviours. We suggest an explanation for why social flexibility might be context dependent and discuss the consequences of such flexibility for the evolution of reproductive isolation.  相似文献   

20.
A combination of divergent natural and sexual selection is a powerful cause of speciation. This conjunction of evolutionary forces may often occur when divergence is initiated by ecological differences between populations because local adaptation to new resources can lead to changes in sexual selection. The hypothesis that differences in resource use contribute to the evolution of reproductive isolation by altering the nature of sexual selection predicts that: (1) differences in sexual traits, such as signals and preferences, are an important source of reproductive isolation between species using different resources; (2) there are identifiable sources of selection on sexual traits that differ between species using different resources; and (3) signals vary between populations using different resources to a larger extent than between populations using the same resource at different localities. Testing these predictions requires a group of closely‐related species or populations that specialize on different resources and for which the traits involved in mate choice are known. The Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) are host plant specialists in which speciation is associated with shifts to novel host plants. Mating in this complex is preceded by an exchange of vibrational signals transmitted through host plant stems, and the signal traits important for mate choice have been identified. In the E. binotata complex, previous work has supported the first two predictions: (1) signal differences between species are important in mate recognition and (2) host shifts can alter both the trait values favoured by sexual selection and the evolutionary response to that selection. In the present study, we tested the last prediction by conducting a large‐scale study of mating signal variation within and between the 11 species in the complex. We find that differences in host use are strongly associated with differences in signal traits important for mate recognition. This result supports the hypothesis that hosts shifts have led to speciation in this group in part through their influence on divergence in mate communication systems. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 60–72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号