首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The driving forces for the regulation of cell morphology are the Rho family GTPases that coordinate the assembly of the actin cytoskeleton. This dynamic feature is a result of tight coupling between the cytoskeleton and signal transduction and is facilitated by actin-binding proteins (ABPs). Mutations in the actin bundling and PDZ domain-containing protein harmonin are the causes of Usher syndrome type 1C (USH1C), a syndrome of congenital deafness and progressive blindness, as well as certain forms of non-syndromic deafness. Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmonin and identified DOCK4, an unconventional guanine exchange factor for the Rho family of guanosine triphosphatases (Rho GEF GTPases), as a protein interacting with harmonin. Detailed molecular analysis revealed that a novel DOCK4 isoform (DOCK4-Ex49) is expressed in the brain, eye and inner ear tissues. We have further provided evidence that the DOCK4-Ex49 binds to nucleotide free Rac as effectively as DOCK2 and DOCK4 and it is a potent Rac activator. By immunostaining using a peptide antibody specific to DOCK4-Ex49, we showed its localization in the inner ear within the hair bundles along the stereocilia (SC). Together, our data indicate a possible Rac-DOCK4-ABP harmonin-activated signaling pathway in regulating actin cytoskeleton organization in stereocilia.  相似文献   

2.
Rho GTPase activation, which is mediated by guanine nucleotide exchange factors (GEFs), is tightly regulated in time and space. Although Rho GTPases have a significant role in many biological events, they are best known for their ability to restructure the actin cytoskeleton profoundly through the activation of specific downstream effectors. Two distinct families of GEFs for Rho GTPases have been reported so far, based on the features of their catalytic domains: firstly, the classical GEFs, which contain a Dbl homology-pleckstrin homology domain module with GEF activity, and secondly, the Dock180-related GEFs, which contain a Dock homology region-2 domain that catalyzes guanine nucleotide exchange on Rho GTPases. Recent exciting data suggest key roles for the DHR-2 domain-containing GEFs in a wide variety of fundamentally important biological functions, including cell migration, phagocytosis of apoptotic cells, myoblast fusion and neuronal polarization.  相似文献   

3.
Beck SC  Meyer TF 《FEBS letters》2000,480(2-3):287-292
The target Rho GTPases of many guanine nucleotide exchange factors (GEFs) of the Dbl family remain to be identified. Here we report a new method: the yeast exchange assay (YEA), a rapid qualitative test to perform a wide range screen for GEF specificity. In this assay based on the two-hybrid system, a wild type GTPase binds to its effector only after activation by a specific GEF. We validated the YEA by activating GTPases by previously reported GEFs. We further established that a novel GEF, GEF337, activates RhoA in the YEA. GEF337 promoted nucleotide exchange on RhoA in vitro and promoted F-actin stress fiber assembly in fibroblasts, characteristic of RhoA activation.  相似文献   

4.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.  相似文献   

5.
Guanine nucleotide exchange factors of the Dbl family regulate the actin cytoskeleton through activation of Rho-like GTPases. At present the Dbl family consists of more than thirty members; many have not been phenotypically or biochemically characterized. Guanine nucleotide exchange factors universally feature a Dbl homology domain followed by a pleckstrin homology domain. Employing data base screening we identified a recently cloned cDNA, KIAA0424, showing substantial sequence homology with Rac activators such as Tiam1, Sos, Vav, and PIX within the catalytic domain. This cDNA appears to be the human homologue of the Ascidian protein Posterior End Mark-2 (PEM-2). We refer to this exchanger as hPEM-2. hPEM-2 encodes a protein of 70 kDa and features an N-terminal src homology 3 domain, followed by tandem Dbl homology and pleckstrin homology domains. The gene is highly expressed in brain and is localized on the human X-chromosome. Employing biochemical activity assays for Rho-like GTPases we found that hPEM-2 specifically activates Cdc42 and not Rac or RhoA. Ectopic expression of hPEM-2 in NIH3T3 fibroblasts revealed a Cdc42 phenotype featuring filopodia formation, followed by cortical actin polymerization and cell rounding. hPEM-2 represents an exchange factor, which may have a role in the regulation of a number of cellular processes through Cdc42.  相似文献   

6.
Rho family GTPases regulate multiple cellular processes through their downstream effectors, where their activities are stimulated by the guanine nucleotide exchange factors. Here, we report a new member of RhoGEF, WGEF, which has the classical structure of DH-PH domain and a C-terminal SH3 domain. WGEF was shown to activate RhoA, Cdc42, and Rac1 by pulldown assay, and forced expression of WGEF resulted in marked rearrangement of the actin cytoskeleton, which is typically seen by the activation of RhoA, Cdc42, and Rac1. WGEF was highly expressed in intestine and also in liver, heart and kidney, which may suggest the involvement of WGEF in the development and functions of these organs. The expression pattern may also suggest the possible importance of WGEF in the understanding of diseases based on metabolic disorder.  相似文献   

7.
Cell motility, adhesion, and actin cytoskeletal rearrangements occur upon integrin-engagement to the extracellular matrix and activation of the small family of Rho GTPases, RhoA, Rac1, and Cdc42. The activity of the GTPases is regulated through associations with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and guanine dissociation inhibitors (GDIs). Recent studies have demonstrated a critical role for actin-binding proteins, such as ezrin, radixin, and moesin (ERM), in modulating the activity of small GTPases through their direct associations with GEFs, GAPs, and GDI’s. Dematin, an actin binding and bundling phospho-protein was first identified and characterized from the erythrocyte membrane, and has recently been implicated in regulating cell motility, adhesion, and morphology by suppressing RhoA activation in mouse embryonic fibroblasts. Although the precise mechanism of RhoA suppression by dematin is unclear, several plausible and hypothetical models can be invoked. Dematin may bind and inhibit GEF activity, form an inactive complex with GDI-RhoA-GDP, or enhance GAP function. Dematin is the first actin-binding protein identified from the erythrocyte membrane that participates in GTPase signaling, and its broad expression suggests a conserved function in multiple tissues.  相似文献   

8.
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.  相似文献   

9.
The Eph family of receptor tyrosine kinases has been implicated in many developmental patterning processes, including cell segregation, cell migration, and axon guidance. The cellular components involved in the signaling pathways of the Eph receptors, however, are incompletely characterized. Using a yeast two-hybrid screen, we have identified a novel signaling intermediate, SHEP1 (SH2 domain-containing Eph receptor-binding protein 1), which is expressed in the embryonic and adult brain. SHEP1 contains an Src homology 2 domain that binds to a conserved tyrosine-phosphorylated motif in the juxtamembrane region of the EphB2 receptor and may itself be a target of EphB2 kinase activity, since it becomes heavily tyrosine-phosphorylated in cells expressing activated EphB2. SHEP1 also contains a domain similar to Ras guanine nucleotide exchange factor domains and binds to the GTPases R-Ras and Rap1A, but not Ha-Ras or RalA. Thus, SHEP1 directly links activated, tyrosine-phosphorylated Eph receptors to small Ras superfamily GTPases.  相似文献   

10.
N Mitin  KL Rossman  CJ Der 《PloS one》2012,7(7):e41876
Spatio-temporal activation of Rho GTPases is essential for their function in a variety of biological processes and is achieved in part by regulating the localization of their activators, the Rho guanine nucleotide exchange factors (RhoGEFs). In this study, we provide the first characterization of the full-length protein encoded by RhoGEF TEM4 and delineate its domain structure, catalytic activity, and subcellular localization. First, we determined that TEM4 can stimulate guanine nucleotide exchange on RhoA and the related RhoB and RhoC isoforms. Second, we determined that TEM4, like other Dbl RhoGEFs, contains a functional pleckstrin homology (PH) domain immediately C-terminal to the catalytic Dbl homology (DH) domain. Third, using immunofluorescence analysis, we showed that TEM4 localizes to the actin cytoskeleton through sequences in the N-terminus of TEM4 independently of the DH/PH domains. Using site-directed mutagenesis and deletion analysis, we identified a minimal region between residues 81 and 135 that binds directly to F-actin and has an ~90-fold higher affinity for ATP-loaded F-actin. Finally, we demonstrated that a single point mutation (R130D) within full-length TEM4 abolishes actin binding and localization of TEM4 to the actin cytoskeleton, as well as dampens the in vivo activity of TEM4 towards RhoC. Taken together, our data demonstrate that TEM4 contains a novel actin binding domain and binding to actin is essential for TEM4 subcellular localization and activity. The unique subcellular localization of TEM4 suggests a spatially-restricted activity and expands the diversity of mechanisms by which RhoGEF function can be regulated.  相似文献   

11.
12.
13.
Rat (r) PDZRhoGEF, initially identified as a glutamate transporter EAAT4-associated protein, is a member of a novel RhoGEF subfamily. The N terminus of the protein contains a PDZ and a proline-rich domain, two motifs known to be involved in protein-protein interactions. By using the yeast two-hybrid approach, we screened for proteins that interact with the N terminus of rPDZRhoGEF. The light chain 2 of microtubule-associated protein 1 (LC2) was the only protein identified from the screen that does not contain a type I PDZ-binding motif at its extreme C terminus (-(S/T)Xphi-COOH, where phi is a hydrophobic amino acid). However, the C terminus does conform to a type II-binding motif (-phiXphi). We report here that rPDZRhoGEF interacts with LC2 via the PDZ domain, and the interaction is abolished by mutations in the carboxylate-binding loop. The specificity of the interaction was confirmed using GST fusion protein pull-down assays and coimmunoprecipitations. Expression of rPDZRhoGEF mutants that are unable to interact with proteins via the carboxylate-binding loop induced changes in cell morphology and actin organization. These mutants alter the activation of RhoGTPases, and coexpression of dominant-negative RhoGTPases prevent the morphological changes. Furthermore, in cells expressing wild type rPDZRhoGEF, drug-induced microtubule depolymerization produces changes in cell morphology that are similar to those induced by rPDZRhoGEF mutants. These results indicate that modulation of the guanine nucleotide exchange activity of rPDZRhoGEF through interaction with microtubule-associated protein light chains may coordinate microtubule integrity and the reorganization of actin cytoskeleton. This coordinated action of the actin and microtubular cytoskeletons is essential for the development and maintenance of neuronal polarity.  相似文献   

14.
Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen.  相似文献   

15.
16.
Small GTPase proteins such as Ras are key regulators of cellular proliferation and are activated by guanine nucleotide exchange/releasing factors (GEFs/GRFs). Three classes of Ras GRFs have been identified to date, represented by Sos1/2, Ras-GRF1/2 and Ras-GRP. Here, we describe a novel candidate Ras activator, cyclic nucleotide rasGEF (CNrasGEF), which contains CDC25, Ras exchange motif (REM), Ras-association (RA), PDZ and cNMP (cAMP/cGMP) binding (cNMP-BD) domains, two PY motifs and a carboxy-terminal SxV sequence. CNrasGEF can activate Ras in vitro, and it binds cAMP directly via its cNMP-BD. In cells, CNrasGEF activates Ras in response to elevation of intracellular cAMP or cGMP, or treatment with their analogues 8-Br-cAMP or 8-Br-cGMP, independently of protein kinases A and G (PKA and PKG). This activation is prevented in CNrasGEF lacking its CDC25 domain or cNMP-BD. CNrasGEF can also activate the small GTPase Rap1 in cells, but this activation is constitutive and independent of cAMP. CNrasGEF is expressed mainly in the brain and is localized at the plasma membrane, a localization dependent on the presence of intact PDZ domain but not the SxV sequence. These results suggest that CNrasGEF may directly connect cAMP-generating pathways or cGMP-generating pathways to Ras.  相似文献   

17.
Kooistra MR  Corada M  Dejana E  Bos JL 《FEBS letters》2005,579(22):4966-4972
We have previously shown that Rap1 as well as its guanine nucleotide exchange factor Epac1 increases cell-cell junction formation. Here, we show that activation of Epac1 with the exchange protein directly activated by cAMP (Epac)-specific cAMP analog 8CPT-2'O-Me-cAMP (007) resulted in a tightening of the junctions and a decrease in the permeability of the endothelial cell monolayer. In addition, 007 treatment resulted in the breakdown of actin stress fibers and the formation of cortical actin. These effects were completely inhibited by siRNA against Epac1. In VE-cadherin knock-out cells Epac1 did not affect cell permeability, whereas in cells re-expressing VE-cadherin this effect was restored. Finally, the effect of Epac activation on the actin cytoskeleton was independent of junction formation. From these results we conclude that in human umbilical vein endothelial cells Epac1 controls VE-cadherin-mediated cell junction formation and induces reorganization of the actin cytoskeleton.  相似文献   

18.
The Ras-GRF1 exchange factor has regulated guanine nucleotide exchange factor (GEF) activity for H-Ras and Rac1 through separate domains. Both H-Ras and Rac1 activation have been linked to synaptic plasticity and thus could contribute to the function of Ras-GRF1 in neuronal signal transduction pathways that underlie learning and memory. We defined the effects of Ras-GRF1 and truncation mutants that include only one of its GEF activities on the morphology of PC12 phaeochromocytoma cells. Ras-GRF1 required coexpression of H-Ras to induce morphological effects. Ras-GRF1 plus H-Ras induced a novel, expanded morphology in PC12 cells, which was characterized by a 10-fold increase in soma size and by neurite extension. A truncation mutant of Ras-GRF1 that included the Ras GEF domain, GRFdeltaN, plus H-Ras produced neurite extensions, but did not expand the soma. This neurite extension was blocked by inhibition of MAP kinase activation, but was independent of dominant-negative Rac1 or RhoA. A truncation mutant of Ras-GRF1 that included the Rac GEF domains, GRFdeltaC, produced the expanded phenotype in cotransfections with H-Ras. Cell expansion was inhibited by wortmannin or dominant-negative forms of Rac1 or Akt. GRFdeltaC binds H-Ras.GTP in both pulldown assays from bacterial lysates and by coimmunoprecipitation from HEK293 cells. These results suggest that coordinated activation of H-Ras and Rac1 by Ras-GRF1 may be a significant controller of neuronal cell size.  相似文献   

19.
The Dbl family of guanine nucleotide exchange factors (GEFs) is made up of a vast array of members that participate in the activation of the Rho family of small GTPases. Dbl-family proteins promote the exchange of guanosine diphosphate/guanosine triphosphate (GDP/GTP) in their target molecules, resulting in the activation of a variety of signaling pathways involved in diverse cellular events, such as actin-cytoskeleton remodeling, cellular invasion, cell movement, and other functions. It has been reported that members of the Dbl family have important roles in several cellular events in Entamoeba histolytica. These include activation of the actin cytoskeleton, cytokinesis, capping, uroid formation, cellular proliferation, erythrophagocytosis, cell migration, and chemotaxis. Here, we report the identification and testing of inhibitors of the E. histolytica guanine nucleotide exchange factor 1 (EhGEF1) protein (the research compounds 2BYRF, 2BY05, 2BYT6, 2BYLX, and 2BYPD), which decreased the in vitro ability of the protein to exchange GDP/GTP at its target GTPases, EhRacG and EhRho1, by 14.9-85.2%. Interestingly, the drug 1,1'-(1,2-phenylene)-bis-(1H-pyrrole-2,5-dione), which completely inhibits the GEF activity of the Trio protein in human cells, decreases the GEF activity of the EhGEF1 protein on the EhRacG and EhRho1 GTPases by 55.7% and 3.2%, respectively. The identification and evaluation of such inhibitors opens up the possibility of obtaining a new pharmacological tool to study the function of amoeba GEF proteins, their roles in various Rho GTPase-mediated signaling pathways, and the repercussions of modulating their activities with respect to several mechanisms related to E. histolytica pathogenesis.  相似文献   

20.
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial toxin known to activate Rho GTPases and induce host cell cytoskeleton rearrangements. The constitutive activation of Rho GTPases by CNF1 is shown to enhance bacterial uptake in epithelial cells and human brain microvascular endothelial cells. However, it is unknown how exogenous CNF1 exhibits such phenotypes in eukaryotic cells. Here, we identified 37-kDa laminin receptor precursor (LRP) as the receptor for CNF1 from screening the cDNA library of human brain microvascular endothelial cells by the yeast two-hybrid system using the N-terminal domain of CNF1 as bait. CNF1-mediated RhoA activation and bacterial uptake were inhibited by exogenous LRP or LRP antisense oligodeoxynucleotides, whereas they were increased in LRP-overexpressing cells. These findings indicate that the CNF1 interaction with LRP is the initial step required for CNF1-mediated RhoA activation and bacterial uptake in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号