首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The heat resistance to hot air of spores of Bacillus cereus (ATCC 14579) attached to carriers of stainless steel or silicone rubber was investigated in a range from 1% to 100% relative humidity (RH). Apart from an initial stage, linear survivor curves were obtained for all relative humidities. Neither the attachment itself nor the material of the carrier had an influence on the resistance. A distinct maximum of heat resistance was found at 40% RH. At 122°C the rate constants at 40% RH were five orders of magnitude smaller than at 100% RH and two orders of magnitude smaller than at 1% RH. At relative humidities of more than 40% the rate constants were strongly temperature dependent, whereas at lower relative humidities they were less temperature dependent. No significant influence of the relative humidity on the Arrhenius activation energy was found within each humidity range. The mean values were 295 kJ mol-1 for relative humidities of 60% to 100% RH and 165 kJ mol-1 for 1% to 20% RH. The occurrence of a maximum is ascribed to the existence of two inactivation mechanisms, the first is retarded and the second is accelerated by a reduction of relative humidity. It is assumed that the first mechanism is a protein denaturation. The second mechanism may be an oxidative process.  相似文献   

2.
S V Pronan 《Mikrobiologiia》1988,57(3):503-506
The filtrate of the cultural broth taken at the lag phase of Bacillus cereus 504 growth stimulated the germination of endospores and the reactivation of refractile resting forms. The energy processes were shown to be stimulated in the studied anabiotic cells.  相似文献   

3.
The effect of recovery media and incubation temperature on the apparent heat resistance of three ATCC strains (4342, 7004 and 9818) of Bacillus cereus spores were studied. Nutrient Agar (NA), Tryptic Soy Agar (TSA), Plate Count Agar (PCA) and Milk Agar (MA) as the media and temperatures in the range of 15–40°C were used to recover heated spores. Higher counts of heat injured spores were obtained on PCA and NA. The optimum subculture temperature was about 5°C below the optimum temperature for unheated spores. No significant differences in heat resistance were observed with the different recovery conditions except for strains 4342 and 9818 when MA was used as plating medium.
Large differences in D -values were found among the strains ( D 100=0·28 min for 7004; D 100=0·99 min for 4342; D 100= 4·57 min for 9818). The 7004 strain showed a sub-population with a greater heat resistance. The z values obtained for the three strains studied under the different recovery conditions were similar (7·64°C 0·25).  相似文献   

4.
5.
6.
Spores of Bacillus cereus were heated and recovered in order to investigate the effect of water activity of media on the estimated heat resistance (i.e., the D value) of spores. The water activity (ranging from 0.9 to 1) of the heating medium was first successively controlled with three solutes (glycerol, glucose, and sucrose), while the water activity of the recovery medium was kept near 1. Reciprocally, the water activity of the heating medium was then kept at 1, while the water activity of the recovery medium was controlled from 0.9 to 1 with the same depressors. Lastly, in a third set of experiments, the heating medium and the recovery medium were adjusted to the same activity. As expected, added depressors caused an increase of the heat resistance of spores with a greater efficiency of sucrose with respect to glycerol and glucose. In contrast, when solutes were added to the recovery medium, under an optimal water activity close to 0.98, a decrease of water activity caused a decrease in the estimated D values. This effect was more pronounced when sucrose was used as a depressor instead of glycerol or glucose. When the heating and the recovery media were adjusted to the same water activity, a balancing effect was observed between the protective influence of the solutes during heat treatment and their negative effect during the recovery of injured cells, so that the overall effect of water activity was reduced, with an optimal value near 0.96. The difference between the efficiency of depressors was also less pronounced. It may then be concluded that the overall protective effect of a decrease in water activity is generally overestimated.  相似文献   

7.
Beta-lactamase type I is reported for the first time to occur in the sporulated form in a penicillin-resistant Bacillus species. The enzyme was readily characterized from the B. cereus 5/B line (ATCC 13061) by mass spectrometry and two-dimensional gel electrophoresis.  相似文献   

8.
The phenolic compounds extracted from olives with ethyl acetate inhibited germination and outgrowth of Bacillus cereus T spores. Purified oleuropein, a well-characterized component of olive extract, inhibited these processes also. The addition of oleuropein and olive extracts 3 or 5 min after germination began, immediately decreased the rate of change of phase bright to phase dark spores and delayed significantly outgrowth.  相似文献   

9.
10.
11.
A disulfide reductase in spores of Bacillus cereus T   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

15.
The effect of ultrasonic treatment on the heat resistance of Bacillus spores differs widely both with the species and the strain tested. Ultrasonic waves do not affect the heat resistance of some strains, whereas they greatly reduce that of other strains of the same species. The heat-sensitizing effect of ultrasonic waves is more pronounced when short heating periods are used. Ultrasonic treatment does not seem to affect the "Z value".  相似文献   

16.
17.
Abstract Bacillus cereus T spores were extensively washed, broken, and heated at 90°C for 2 min. Using calcium-dependent hydrophobic interaction chromatography, a single peak protein fraction was obtained which possessed calcium-binding capacity and some characteristics of calmodulin. This heat-stable protein fraction was retained by hydrophobic matrices (Phenyl-Sepharose) or a calmodulin antagonist (naphthalenesulfonamide) in a calcium-dependent manner. Calcium binding ability was verified by 45Ca autoradiography and a competitive calcium binding assay using Chelex-100. The crude spore extract displaced bovine brain calmodulin from its antibody in a radioimmunoassay and the immunoreactive specific activity of the partially purified fraction was approx. 200-fold greater than the crude spore extract. Thus, B. cereus T spores have a calcium-binding protein with calmodulin-like properties.  相似文献   

18.
Spores of Bacillus cereus T treated with trichloroacetic acid (6.1--61.2 mM) were compared with untreated spores, and as the concentration of the chemical increased, the following alterations in spore properties were found: (1) the extent of germination decreased irrespective of the germination medium used; (2) the spores became sensitive to sodium hydroxide (1 N) and hydrochloric acid (0.27 N), but not to lysozyme (200 micrograms/ml); (3) loss of dipicolinate increased on subsequent heating; and (4) the spores became more sensitive to heat. However, trichloroacetic acid-treated spores were still viable and there was no significant change in spore components. The mechanism of action of trichloroacetic acid is discussed.  相似文献   

19.
20.
Some physical, chemical, and immunological properties of filamentous appendages and the exosporium on the spores of Bacillus cereus were examined for the purpose of elucidating the origin of filamentous appendages. The main components of both filamentous appendages and the exosporium were protein and their amino acid compositions were similar in point of a high content of glycine, alanine, threonine, valine, and acidic amino acids and a low content of basic and sulphur-containing amino acids. Treatment with 1 N NaOH at 50 C solubilized the isolated appendages completely and the isolated exosporia partially. In both preparations the solubilized proteins consisted of highly acidic monomeric subunits with molecular weights between 2,000 and 5,000. Treatment of the spores with 2% 2-mercaptoethanol at 37 C resulted in the isolation of long filamentous appendages without segmentation. When the spores were treated with 10% 2-mercaptoethanol, there was partial destruction of the exosporium as well as detachment of the filamentous appendages. There was a common antigenic component in the exosporium and the tips of the filamentous appendages. Five strains of B. cereus having a common appendage antigen also had a common exosporium antigen, whereas six other strains had neither a common appendage antigen nor a common exosporium antigen. From these facts it was concluded that the filamentous appendages arose from the exosporium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号