首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Alcohol consumption during adolescence has long-term sexually dimorphic effects on anxiety behavior and mood disorders. We have previously shown that repeated binge-pattern alcohol exposure increased the expression of two critical central regulators of stress and anxiety, corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), in adolescent male rats. By contrast, there was no effect of alcohol on these same genes in adolescent females. Therefore, we tested the hypothesis that 17β-estradiol (E(2)), the predominant sex steroid hormone in females, prevents alcohol-induced changes in CRH and AVP gene expression in the paraventricular nucleus (PVN) of the hypothalamus. To test this hypothesis, postnatal day (PND) 26 females were ovariectomized and given E(2) replacement or cholesterol as a control. Next, they were given an alcohol exposure paradigm of 1) saline alone, 2) acute (single dose) or 3) a repeated binge-pattern. Our results showed that acute and repeated binge-pattern alcohol treatment increased plasma ACTH and CORT levels in both E(2)- and Ch-treated groups, however habituation to repeated binge-pattern alcohol exposure was evident only in E(2)-treated animals. Further, repeated binge-pattern alcohol exposure significantly decreased CRH and AVP mRNA in Ch-, but not E(2)-treated animals, which was consistent with our previous observations in gonad intact females. We further tested the effects of E(2) and alcohol treatment on the activity of the wild type CRH promoter in a PVN-derived neuronal cell line. Alcohol increased CRH promoter activity in these cells and concomitant treatment with E(2) completely abolished the effect. Together our data suggest that E(2) regulates the reactivity of the HPA axis to a repeated stressor through modulation of the habituation response and further serves to maintain normal steady state mRNA levels of CRH and AVP in the PVN in response to a repeated alcohol stressor.  相似文献   

2.
Objectives: To investigate anti‐proliferative properties of a novel in silico‐modelled 17β‐oestradiol derivative (C9), in combination with dichloroacetic acid (DCA), on MCF‐7 and MCF‐12A cells. Materials and methods: xCELLigence system was employed to determine optimal seeding number for cells, and crystal violet assay was used to assess cell number and to determine IC50 value (24 h) for combination treatment. Light and fluorescent microscopy techniques were used to morphologically detect types of cell death. Flow cytometry was used to analyse cell cycle and apoptosis. Results: Optimal seeding number for 96‐well plates was determined to be 5000–10 000 cells/well for both MCF‐7 and MCF‐12A cells. IC50 for MCF‐7 cells of the combination treatment after 24 h was 130 nm of C9 in conjunction with 7.5 mm of DCA (P < 0.05). In contrast, the same concentration inhibited cell population growth by only 29.3% for MCF‐12As after 24‐h treatment (P < 0.05). Morphological studies revealed lower cell density of both types of combination‐treated cells. Flow cytometric analyses demonstrated increase in sub‐G1 phase in combination‐treated MCF‐7 cells. Conclusions: These results demonstrate that the novel 17β‐oestradiol derivative C9, in combination with DCA is a potent anti‐proliferation treatment, with properties of selectivity towards tumourigenic cells. Thus, this warrants further studies as a potential combination chemotherapeutic agent for further cancer cell lines.  相似文献   

3.
4.
The binding site locations and structural components for type I and type II positive allosteric modulators (PAMs) of the α7 nicotinic acetylcholine receptor (nAChR) have not been fully characterized yet. In this regard, homology models of the human α7 nAChR and hα7/m5-HT3A chimera, built using the crystal structure of the serotonin type 3A receptor (5-ΗΤR), were used for molecular docking and molecular dynamics simulations to study the molecular interactions of selected type I (5-hydroxyindol, NS-1738, and LY-2087101) and type II (PNU-120596, PAM-2, and TBS-516) PAMs. The docking results indicate: (1) a site located in the extracellular domain (ECD) for type I PAMs such as NS-1738 and LY-2087101, but not for 5-HI; (2) an overlapping site in the ECD–transmembrane domain (TMD) junction for all studied PAMs. Additional docking results on the hα7/m5-HT3A chimera supported experimental results indicating that the ECD site might be relevant for type I PAM activity; and (3) two TMD sites, an intrasubunit site that recognizes type II PAMs, and an intersubunit pocket with high specificity for 5-HI (type I PAM). The in silico α7TSLMF mutant results support the view that M1–Ser223 and M3–Ile281 are key residues for the interaction of PAM-2 and PNU-120596 with the intrasubunit cavity. Our in silico results are in agreement with experimental data showing that the intrasubunit cavity is relevant for the activity of type II PAMs, and suggest that the ECD–TMD junction and intersubunit sites could be significant for the activity of type I PAMs.  相似文献   

5.
In the central and peripheral nervous systems a heterogeneous group of proteins constituting the thrombospondin superfamily provides a cue for axonal pathfinding. They either contain or are devoid of the tripeptide RGD, and the sequence(s) and mechanism(s) which trigger in vitro their neurite-promoting activity have remained unclear. In this study, we reconsider the problem of whether sequences present in the thrombospondin type 1 repeats (TSRs), and independent of the well-known RGD-binding site, may activate integrins and account for their neurite-promoting activity. SCO-spondin is a newly identified member of the thrombospondin superfamily, which shows a multidomain organization with a great number of TSR motifs but no RGD sequence. Previous research has implicated oligopeptides derived from SCO-spondin TSRs in in-vitro development of various neuronal cell types. In this study, we investigate whether function-blocking antibodies directed against integrin subunits can block these effects in cell line B104, cloned from a neuroblastoma of the rat central nervous system. By two different approaches: flow cytometry revealing short-term effects and cell cultures revealing long-term effects, we show that: (a) activation of cell metabolism, (b) changes in cell size and structure, and (c) neurite-promoting activity induced by TSR oligopeptides are inhibited by function-blocking antibodies to 1-subunit. Using a panel of function-blocking antibodies directed against various integrin -subunits we show that the 1-subunit might be the partner of the 1-subunit in B104 cells. Thus, we demonstrate that an original sequence within a TSR motif from SCO-spondin promotes neurite outgrowth through an intracellular signal driven by integrins, independently of an RGD-binding site.  相似文献   

6.
Mitochondrial dynamics, specifically fusion and fission processes, maintain mitochondria integrity and function, yet at this time, effect of estrogens on fusion and fission in breast cancer cell lines has not been studied. The aim of this study was to characterize the effect of 17β-estradiol on fusion and fission-related genes, as well as on mitochondria proliferation and function. We used MCF-7 breast cancer cell line, which is estrogen sensitive (estrogen receptor positive). Cells were grown in Dulbecco's modified Eagle medium charcoal-stripped fetal bovine serum and treated with 1nM of 17β-estradiol and with/without 100nM of ICI 182,780, a drug that caused rapid degradation of estrogen receptor. mRNA levels of fusion (mfn1, mfn2, opa1) and fission-related genes (drp1 and fis1) were examined by RT-PCR, cardiolipin content by N-acridyl-orange fluorescence and oxidative phosphorylation protein levels, as well as, the major fusion and fission related protein levels, by Western blot. mRNA expression of fusion-related genes increased after 17β-estradiol-treatment for 4h; however fis1 fission-related gene expression decreased. All these effects were not found in cells pre-treated with ICI 182,780, save for the changes in mfn-1, conferring them the effects of 17β-estradiol to estrogen receptor. The changes in protein levels were less prominent, but in the same way, than in mRNA levels, showing an increase in Mfn1 and Mfn2, as well as in Drp1, but there was no change in Fis1 protein levels. Mitochondrial biogenesis was also affected by 17β-estradiol, showing an increase in mtDNA but with no change in N-acridyl-orange fluorescence. On the whole, our results suggest an imbalance in the fusion/fission ratio, with a high fusion by 17β-estradiol-estrogen receptor action, which can affect to mitochondrial biogenesis, concretely in mitochondria proliferation. According to this information, 17β-estradiol would modify mitochondrial dynamics, biogenesis and metabolism, and thus compromise the normal development and function of mitochondria in cancer affected tissues.  相似文献   

7.
The DEAE-cellulose-purified 4 S form of the rat liver glucocorticoid receptor can associate with cytosolic factors, as evidenced by an alteration of the sedimentation value of the 7–8 S form. On the basis of sedimentation profile, this form is indistinguishable from the activated, low-salt 7–8 S form isolated from rat liver cytosol. In addition, both the endogenous and reconstituted 7–8 S receptor can bind DNA as the 7–8 S form. In keeping with our reports that the endogenous form of the 7–8 S receptor is sensitive to RNAase digestion, treatment of the cytosol with RNAase prior to mixing with the 4 S receptor prevents the formation of the 7–8 S material. Moreover, warming the cytosol to 50°C prior to mixing with the 4 S receptor also eliminates the ability to form the heavier material. Since RNA is heat-stable, this suggests that other factors may be involved. Treatment of the cytosol with N-ethylmaleimide, a reagent reported to be specific for sulfhydryl groups, also eliminates 7–8 S generating ability. These observations suggest that a protein may be a component of the 7–8 S generating material. This is substantiated by the observation that trypsin or chymotrypsin treatment of the cytosol mitigates the ability of the cytosol to form the 7–8 S material and results in the appearance of a form of the receptor that sediments at approximately 6 S. Protease treatment of partially purified material eliminates the 7–8 S generating activity entirely. We conclude that the 7–8 S form of the receptor can be reconstituted from the 4 S receptor via association with at least two other cytosolic factors, a protein and an RNA.  相似文献   

8.
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.  相似文献   

9.
We have previously shown that the human somatostatin receptor type 1 (hSSTR1) does not undergo agonist-induced internalization, but is instead up-regulated at the membrane upon prolonged somatostatin (SST) exposure. The deletion of the carboxyterminal C-tail of the receptor completely abolishes up-regulation. To identify molecular signals that mediate hSSTR1 up-regulation, we created mutant receptors with progressive C-tail deletions. Up-regulation was found to be absent in mutants lacking residues Lys359-Ser360-Arg361. Moreover, point mutation of Ser360 to Ala completely abolished up-regulation. The coexpression of wild type hSSTR1 with V53D, a dominant negative mutant of β-arrestin-1, completely blocked hSSTR1 up-regulation. Further analysis demonstrated that calcium-calmodulin (CaM) dependent kinases were essential for the SST-induced up-regulation response. Like wild type receptors, all mutants failed to internalize after agonist exposure and were able to inhibit forskolin-stimulated cAMP accumulation. Taking these data together, we suggest that SST-induced hSSTR1 up-regulation is critically dependent upon a specific Lys-Ser-Arg sequence in the C-tail of the receptor, with Ser360 being essential. Up-regulation also requires the participation of CaM protein kinases and interactions with β-arrestins. In contrast, coupling to adenyl cyclase (AC) and internalization occur independently of molecular signals in the receptor's C-tail.  相似文献   

10.
In MCF-7/Dox human breast carcinoma cells, down-regulation of integrin α5β1 and inhibition of epidermal growth factor receptor (EGFR) markedly reduced cell proliferation. Cell cycle analysis showed that α5β1 down-regulation resulted in cycle arrest at the S-phase, followed by a significant increase in the population of apoptotic cells (subG1 population). Inhibition of EGFR activity also caused cell cycle arrest at the S-phase but without any increase in the subG1 population. Down-regulation of α5β1 and EGFR inhibition resulted in a significant decrease of cell content of the active (phosphorylated) forms of FAK and Erk protein kinases. The data obtained suggest that α5β1 integrin is implicated in cell growth control via inhibition of apoptotic cell death and through EGFR activation.  相似文献   

11.
Transforming growth factor-beta (TGF-β) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-β in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-β receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-β-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1−/− hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-β, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-β-induced survival signals in Cav1−/− hepatocytes, such as AKT and ERK1/2 phosphorylation and NFκ-B activation. Transactivation of the EGFR pathway by TGF-β was impaired in Cav1−/− hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1−/− hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1+/+ cells, which was not the case in Cav1−/− cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-β treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-β-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-β pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-β in liver cancer cells.The transforming growth factor-beta (TGF-β) belongs to a family of polypeptide factors, whose cytostatic and apoptotic functions help restrain the growth of mammalian cells. However, paradoxically, TGF-β also modulates processes such as cell invasion, immune regulation and microenvironment modification, which cancer cells may exploit to their advantage.1 Indeed, a better knowledge about the mechanistic basis and clinical relevance of TGF-β is required for a better understanding of the complexity and therapeutic potential of this pathway. In hepatocytes, TGF-β induces both pro- and anti-apoptotic signals, whose balance decides cell fate.2 Those hepatocytes that survive to TGF-β-mediated apoptosis induce an epithelial–mesenchymal transition (EMT) process, which confers migratory properties and apoptosis resistance.3 The anti-apoptotic signals are at least partially mediated by the epidermal growth factor receptor (EGFR) pathway, which is transactivated by TGF-β through a mechanism that involves upregulation of the EGFR ligands and activation of the metalloprotease TACE/ADAM17 responsible for their shedding.4, 5Many efforts have been done in the recent years for a better understanding of spatial requirements on TGF-β signaling, including endocytic TGF-β receptors trafficking. Strong pieces of evidence support that TGF-β receptors can be located both in clathrin-coated pits and caveolin/cholesterol-enriched lipid rafts.6, 7 A pioneer study from Di Guglielmo et al.8 proposed that Smad2 phosphorylation would require clathrin-dependent endocytosis, whereas TGF-β receptors internalization via caveolae/lipid rafts would inhibit its signaling. From then, different studies have suggested that the endocytic pathways'' role on TGF-β signaling depend on the cell type and a general rule about the role of endocytosis in TGF-β signaling is not well understood yet.9 In hepatocytes, Smad activation is in a large extent accomplished on the hepatocyte plasma membrane in an AP-2 complex-dependent manner, being unnecessary the formation of clathrin-coated pits.10 In contrast, the non-Smad/AKT pathway activation requires caveolin-1 (Cav1)-dependent endocytosis,10 which is required for counteracting apoptosis.11Cav1 is required for caveolae formation, which regulates not only endocytosis, but also lipid metabolism and energy homeostasis.12 The localization of membrane receptors in the lipid raft pushed to investigate the role of Cav1 in regulating signaling events. In the case of epidermal growth factor (EGF) signaling, it was proposed that non-caveolae-coated pits are involved in the compartmentalization and internalization of the EGFR, although caveolin-rich domains may be required for signaling.13 In this line of evidence, different studies revealed an important role for Cav1 in EGFR-induced effects on cell proliferation and migration.14, 15In this work, we have examined the role of Cav1 in the anti-apoptotic signals induced by TGF-β in hepatocytes, postulating that it may be required for TGF-β-mediated regulation of EGFR signaling. Using different experimental approaches and an immortalized hepatocyte cell line derived from Cav1−/− mice, we demonstrate that transactivation of the EGFR pathway by TGF-β is impaired in Cav1−/− hepatocytes. However, Cav1 is not required for the cellular response to EGFR ligands, but is necessary for TGF-β-mediated activation of the metalloprotease TACE/ADAM17, which is responsible for shedding of EGFR ligands and requires an intact lipid raft domain to be activated by TGF-β.  相似文献   

12.
Summary Both retinoic acid and 17β-estradiol formed covalent bonds with proteins of the human breast cancer cell line MCF-7. Two-dimensional gel patterns of the labeled proteins were unique for each ligand. There were four major retinoylated proteins in MCF-7 consisting of two doublets with molecular masses of 37 kDa and 20 kDa. These proteins were designated 37a, 37b, 37c, and 20d. The extent of retinoylation was very low in a 55 kDa protein that we previously identified in the human myeloid leukemia cell line HL60 [Takahashi, N. and Breitman, T. R. (1989) J. Biol. Chem. 264, 5159–5163]. These results indicated that the protein substrates for retinoylation may vary among cell-types. About 10 proteins were labeled from 17β-estradiol. Two of these proteins had mobilities that were identitied to the retinoylated proteins 37a and 20c. These results indicate that in MCF-7 cells there are two proteins that can be retinoylated and labeled from estradiol. The demonstration that some ligands of the steroid/thyroid receptor family are covalently linked to cellular proteins suggests new mechanisms for the many effects of these agents on cells. This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cell line MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones. EDITOR’S STATEMENT This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cellline MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones.  相似文献   

13.
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1β, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1β may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1β stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1β. The radioimmunoassay result showed that the blood IL-1β level was increased after the intraperitoneal injection of rmIL-1β (750 ng/kg) from 0.48 ± 0.08 to 0.78 ± 0.07 ng/ml (P < 0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1β stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions. Xi-Jing Zhang and Xi Wang are co-first authors.  相似文献   

14.
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-β1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TβRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TβRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-β1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-β1.  相似文献   

15.
Zhang W  Miao J  Ma C  Han D  Zhang Y 《Peptides》2012,36(2):186-191
This study was designed to investigate the putative protective effect of β-casomorphin-7 on diabetic nephropathy in a rat model, and to explore the possible mechanism of this effect. SD rats were randomly divided into the following three groups: control group, diabetes group and β-casomorphin-7-treatment group. All rats were euthanized after 30 days with or without β-casomorphin-7 treatment. Biochemical parameters including blood glucose and renal function were quantified. The concentration of plasma TGF-β1 was measured by ELISA. Histopathological changes to the kidney were studied by Masson and Sirius red staining. Expressions of α-smooth muscle actin (α-SMA), E-cadherin, vimentin, cytokeratin19 and TGF-β1 mRNA in rat renal cortices were analyzed by real-time PCR. Changes in α-SMA and E-cadherin protein expression in rat renal cortices were quantified by Western blot. β-Casomorphin-7 treatment of diabetic rats reduced urinary glucose, urinary protein, serum creatinine, blood urinary nitrogen, plasma TGF-β1 and the ratio of kidney: body weight. Masson and Sirius red staining showed that β-casomorphin-7 treatment attenuated renal interstitial fibrosis in diabetic rats. Compared to the control rats, diabetic rats had elevated expressions of α-SMA, vimentin and TGF-β1 mRNA and α -SMA protein and decreased expression of E-cadherin and cytokeratin19 mRNA, and E-cadherin protein. β-Casomorphin-7 treatment of diabetic rats partially normalized these changes. Our results suggest that administration of β-casomorphin-7 attenuates renal interstitial fibrosis caused by diabetes. This protective effect may be associated, in part, with down regulation of epithelial-mesenchymal transition of renal tubular epithelial cells.  相似文献   

16.
17.
18.
Molecular Biology Reports - Muscle atrophy is induced by several pathways, e.g., it can be attributed to inherited cachectic symptoms, genetic disorders, sarcopenia, or chronic side effects of...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号