首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tumor-promoting phorbol ester, [3H]phorbol-12,13-dibutyrate, may bind to a homogeneous preparation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) in the simultaneous presence of Ca2+ and phospholipid. This tumor promoter does not bind simply to phospholipid nor to the enzyme per se irrespective of the presence and absence of Ca2+. All four components mentioned above appear to be bound together, and the quaternary complex thus produced is enzymatically fully active for protein phosphorylation. Phosphatidylserine is most effective. Various other phorbol derivatives which are active in tumor promotion compete with [3H]phorbol-12,13-dibutyrate for the binding, and an apparent dissociation binding constant of the tumor promoter is 8 nM. This value is identical with the activation constant for protein kinase C and remarkably similar to the dissociation binding constant that is described for intact cell surface receptors. The binding of the phorbol ester is prevented specifically by the addition of diacylglycerol, which serves as activator of protein kinase C under physiological conditions. Scatchard analysis suggests that one molecule of the tumor promoter may bind to every molecule of protein kinase C in the presence of Ca2+ and excess phospholipid. It is suggestive that protein kinase C is a phorbol ester-receptive protein, and the results presented seem to provide clues for clarifying the mechanism of tumor promotion.  相似文献   

2.
《Life sciences》1994,54(2):PL29-PL33
This study investigates the relationship between the contractile efficacy of phorbol esters and their ability to activate protein kinase C in intact rabbit aorta. Phorbol dibutyrate (PDB) induced a maximal contraction approximately 3.5-fold greater than that to phorbol myristate acetate (PMA). The magnitude of maximal PDB- and PMA-induced contraction correlated with the magnitude of protein kinase C activation, as assessed by the decrease in cytosolic protein kinase C activity. KCl (60mM) did not potentiate the PMA-induced decrease in cytosolic protein kinase C activity. These results suggest that the lack of efficacy of PMA is due to its inability to activate protein kinase C in the intact rabbit aorta. It is speculated that the different contractile efficacies of phorbol esters result from selective activation of protein kinase C isoforms, and that the amounts of these isoforms varies amongst vascular tissues.  相似文献   

3.
4.
Protein kinase C negatively modulated by phorbol ester   总被引:3,自引:0,他引:3  
Pretreatment of protein kinase C with 12-O-tetradecanoylphorbol-13-acetate (TPA) and phospholipid resulted in complete inhibition of ATP/phosphotransferase activity, irreversibly. The inactivation by TPA required the phospholipid, and TPA alone did not cause inactivation. Ca2+ and diacylglycerol mimicked TPA. This action of TPA was not general for all protein kinases as it did not accelerate the inactivation of the catalytic subunit of cAMP-dependent protein kinase by phospholipid. The addition of MgATP to the reaction mixture completely protected protein kinase C from being inactivated by TPA, in the presence of phospholipid. The nucleotide-binding site of the enzyme was probably influenced by the binding of TPA and phospholipid.  相似文献   

5.
Cyclosporin A inhibits biological effects of tumor promoting phorbol esters   总被引:1,自引:0,他引:1  
The antilymphocytic and antiphlogistic agent cyclosporin A (CsA) inhibits in vivo various effects induced by the tumor promoting phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA). These include the edema of the mouse ear, the alkaline phosphatase (AP) activity and the ornithine decarboxylase (ODC) activity in mouse epidermis as well as the generation of a specific arachidonic acid (AA) metabolite in mouse epidermis. AA metabolism in an epidermal cell-free system of mouse epidermis was not suppressed by CsA. According to thin layer chromatography the TPA-induced and as yet unidentified AA metabolite exhibits a polarity between that of 5-HETE and 12-/15-HETE. Studies with inhibitors indicate it to be a lipoxygenase product.  相似文献   

6.
In cultured rabbit aortic smooth muscle cells (SMC), 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in the presence of plasma-derived serum to a small extent, but inhibited markedly the rabbit whole blood serum (WBS)-, platelet-derived growth factor (PDGF)- and epidermal growth factor-induced DNA synthesis. Phorbol-12,13-dibutyrate (PDBu) mimicked this antiproliferative action of TPA, but 4 alpha-phorbol-12,13-didecanoate was inactive in this capacity. Prolonged treatment of the cells with PDBu caused the partial down-regulation of protein kinase C. In these protein kinase C-reduced cells, WBS still induced DNA synthesis, but TPA did not inhibit the WBS-induced DNA synthesis. We have previously shown that protein kinase C is involved at least partially in the PDGF-induced DNA synthesis in rabbit aortic SMC. The present results together with this earlier observation suggest that protein kinase C has not only a proliferative but also an antiproliferative action in rabbit aortic SMC.  相似文献   

7.
8.
Active phorbol esters such as TPA (12-0-tetra-decanoylphorbol-13-acetate) inhibited growth of mammary carcinoma cells (MCF-7 greater than BT-20 greater than MDA-MB-231 greater than = ZR-75-1 greater than HBL-100) with the exception of T-47-D cells presumably by interacting with the phospholipid/Ca2+-dependent protein kinase (PKC). The nonresponsive T-47-D cells exhibited the lowest PKC activity. A rapid (30 min) TPA-dependent translocation of cytosolic PKC to membranes was found in the five TPA-sensitive cell without affecting cell growth. However, TPA-treatment of more than 10 hours inhibited reversibly the growth of TPA-responsive cells. This effect coincided with the complete loss of cellular PKC activity due to the proteolysis of the translocated membrane-bound PKC holoenzyme (75K) into 60K and 50K PKC fragments. Resumption of cell growth after TPA-removal was closely related to the specific reappearance of the PKC holoenzyme activity (75K) in the TPA-responsive human mammary tumor cell lines suggesting an involvement of PKC in growth regulation.  相似文献   

9.
The synthetic nonapeptide Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val is a substrate for in vitro phosphorylation by a partially purified preparation of rat brain protein kinase C, with Kmapp of about 130 microM. The closely related peptide kemptide was a much weaker substrate, bovine serum albumin was not a substrate and the peptide Arg-Arg-Lys-Ala-Ala-Gly-Pro-Pro-Val was a weak inhibitor of the enzyme. Protein kinase C-catalyzed phosphorylation of histone III-S and the nonapeptide are regulated by identical mechanisms since with both substrates the reaction required added phospholipid and either Ca2+ (1mM) or TPA (200 nM TPA). Our findings show that polypeptides containing multiple basic residues followed by the sequence Ala-Ser can be substrates for TPA-stimulated phosphorylation by protein kinase C.  相似文献   

10.
The addition of the protein kinase C activator phorbol esters to cell suspension a few minutes prior to stimulation inhibits the agonists-induced biochemical changes and cell responses. This inhibition is prevented by protein kinase C inhibitors. Activation of protein kinase C down regulates the stimulated responses by affecting one or more of the steps in the exitation-response coupling. This includes the receptors, the quanine-nucleotide-binding protein, the activity or distribution of phospholipase C, and other steps.  相似文献   

11.
The 25 kDa mRNA cap binding protein can be purified in a partially phosphorylated state and the extent of its phosphorylation appears to be regulated during heat shock and mitosis in mammalian cells. We demonstrated that a nonabundant serine protein kinase activity exists in rabbit reticulocytes that phosphorylates the 25 kDa cap binding protein in both the free (eIF-4E) and complexed (eIF-4F) state. This kinase was not inhibited by the cAMP-dependent protein kinase inhibitory peptide IAAGRTGRRNAIHDILVAA, did not phosphorylate S6 ribosomal protein, did not phosphorylate p220 of eIF-4F as protein kinase C does and no other substrates for this kinase were apparent in reticulocyte ribosomal salt wash. The molecular identity of this kinase, the specific site(s) of eIF-4E that it phosphorylates and its in vivo regulatory role remain to be studied.  相似文献   

12.
13.
Protein kinase C epsilon (PKCepsilon) is activated by thyrotropin-releasing hormone (TRH), a regulator of pituitary function in rat pituitary GH(4)C(1) cells. We analyzed the downstream mechanism after PKCepsilon activation. Exposure of GH(4)C(1) cells to TRH or a phorbol ester increased the phosphorylation of three p52 proteins (p52a, p52b and p52c) and decreased the phosphorylation of destrin and cofilin. GF109203X, an inhibitor of protein kinases including PKC, inhibited phosphorylation of the p52 proteins by TRH stimulation. Peptide mapping, amino-acid sequencing, and immunochemical studies indicated that p52a, p52b, and p52c are the differentially phosphorylated isoforms of keratin 8 (K8), an intermediate filament protein. The unphosphorylated K8 (p52n) localized exclusively to the cytoskeleton, whereas the phosphorylated forms (especially p52c), which are increased in TRH-stimulated cells, localized mainly to the cytosol. K8 phosphorylation was enhanced in PKCepsilon-overexpressing clones, and purified recombinant PKCepsilon directly phosphorylated K8 with a profile similar to that observed in TRH-stimulated cells. PKCepsilon and K8 colocalized near the nucleus under basal conditions and were concentrated in the cell periphery and cell-cell contact area after TRH stimulation. MS analyses of phospho-K8 and K8-synthesized peptide (amino acids 1-53) showed that PKCepsilon phosphorylates Ser8 and Ser23 of K8. Phosphorylation of these sites is enhanced in TRH-stimulated cells and PKCepsilon-overexpressing cells, as assessed by immunoblotting using antibodies to phospho-K8. These results suggest that K8 is a physiological substrate for PKCepsilon, and the phosphorylation at Ser8 and Ser23 transduces, at least in part, TRH-PKCepsilon signaling in pituitary cells.  相似文献   

14.
The tumor-promoter, TPA, stimulates growth of human epithelial cells but not that of normal fibroblasts. In the presence of either EGF or FGF, TPA antagonizes the growth stimulatory activity of both factors in both cell lines.  相似文献   

15.
16.
Diacylglycerol kinase (DGK) terminates diacylglycerol (DAG) signaling by phosphorylating DAG to produce phosphatidic acid, which also has signaling properties. Thus, precise control of DGK activity is essential for proper signal transduction. We demonstrated previously that a peptide corresponding to the myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domain (PSD) in DGK zeta was phosphorylated in vitro by an active fragment of protein kinase C (PKC). In the present study, we tested full-length DGK zeta and found that PKC alpha phosphorylated DGK zeta on serines within the MARCKS PSD in vitro and in vivo. DGK zeta also coimmunoprecipitated with PKC alpha, suggesting that they reside in a regulated signaling complex. We then tested whether phosphorylation affected DAG kinase activity. We found that a mutant (DGK zeta S/D) in which serines within the MARCKS PSD were altered to aspartates (to mimic phosphorylation) had lower activity compared with wild-type DGK zeta or a control mutant (DGK zeta S/N) in which the same serines were changed to asparagines. Furthermore, activation of PKC alpha by phorbol 12-myristate 13-acetate inhibited the activity of wild-type DGK zeta, but not DGK zeta S/D, in human embryonic kidney 293 cells. These results suggest that by phosphorylating the MARCKS PSD, PKC alpha attenuates DGK zeta activity. Supporting this, we found that cells expressing DGK zeta S/D had higher DAG levels and grew more rapidly compared with cells expressing DGK zeta S/N that could not be phosphorylated. Taken together, these results indicate that PKC alpha phosphorylates DGK zeta in cells, and this phosphorylation inhibits its kinase activity to remove cellular DAG, thereby affecting cell growth.  相似文献   

17.
During autophagy, the microtubule-associated protein light chain 3 (LC3), a specific autophagic marker in mammalian cells, is processed from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In HEK293 cells stably expressing FLAG-tagged LC3, activation of protein kinase C inhibited the autophagic processing of LC3-I to LC3-II induced by amino acid starvation or rapamycin. PKC inhibitors dramatically induced LC3 processing and autophagosome formation. Unlike autophagy induced by starvation or rapamycin, PKC inhibitor-induced autophagy was not blocked by the PI-3 kinase inhibitor wortmannin. Using orthophosphate metabolic labeling, we found that LC3 was phosphorylated in response to the PKC activator PMA or the protein phosphatase inhibitor calyculin A. Furthermore, bacterially expressed LC3 was directly phosphorylated by purified PKC in vitro. The sites of phosphorylation were mapped to T6 and T29 by nanoLC-coupled tandem mass spectrometry. Mutations of these residues significantly reduced LC3 phosphorylation by purified PKC in vitro. However, in HEK293 cells stably expressing LC3 with these sites mutated either singly or doubly to Ala, Asp or Glu, autophagy was not significantly affected, suggesting that PKC regulates autophagy through a mechanism independent of LC3 phosphorylation.  相似文献   

18.
Sponges grown in the presence of 12-O-tetradecanoyl phorbol-13-acetate (TPA) show deep alterations of their structure and development. Their aquiferous system (flagellated cells and canals) is largely altered and the tissues show an unusually high cell density. This focalized effect of TPA on the aquiferous system seems specific and is reversible at low concentrations (100 ng/ml). A toxic, non-specific effect is also noted, particularly at high concentrations (5000 ng/ml). Using 3H-phorbol-12, 13-dibutyrate (3H-PDBu), we demonstrate a class of specific binding sites for phorbol esters in the homogenates of sponges. These binding sites have high affinity (Kd = 26.0 nM) for PDBu and at saturation about 20 pmoles of 3H-PDBu is bound per mg protein of sponge homogenates. The binding of 3H-PDBu was inhibited by other phorbol esters and their congeners, and there was a good correlation between their potency in binding inhibition and their tumor promoting activity. It is concluded that sponges have a class of specific saturable and high affinity receptors for phorbol esters and that there is a very high conservation of these receptors during evolution. Such specific binding may be responsible for subsequent biological effect of TPA on sponges.  相似文献   

19.
Protein kinase C (PKC) comprises a family of distinct isoenzymes that are involved in signal transduction pathways linking the cell to triggers perceived via membrane receptors. These isoenzymes differ in their tissue distribution, activation requirements, and substrate specificity. One common denominator among different PKC subspecies is their activation by phorbol esters. We have developed a sensitive method permitting the measurement of phorbol ester binding sites, their quantitation, as well as their dissociation kinetics, by performing cytofluorometric analyses on intact cells or on isolated PKC associated to phosphatidylserine vesicles incubated in the presence of fluorochrome-labeled phorbol ester. Both PKC isozymes beta I/beta II and alpha from brain and spleen after incorporation into phosphatidylserine vesicles, display affinities with apparent Kd of 120 and 50 nM, respectively; although PKC gamma from brain exhibits a Kd of 210 nM. In addition to these receptors, on PKC isozymes from spleen, an intermediate affinity phorbol ester receptor (Kd of 3 nM) and an additional high affinity phorbol ester binding site with a Kd of 0.1 to 0.5 nM were also detected. This latter receptor comigrates with high m.w. PKC isoforms. In different cell lines, the phorbol ester binding patterns, as well as the expression of individual PKC isoenzymes, could be positively correlated.  相似文献   

20.
Specific high affinity binding sites for phorbol esters have been demonstrated in the nervous tissue of locust. The binding was reduced by the kinase C-inhibitor polymyxin B. Phorbol esters in micromolar concentrations activated protein kinase C in subcellular preparations from locust ganglia. The same concentrations of phorbol esters significantly enhanced the high affinity transport of choline and the release of acetylcholine by locust synaptosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号