首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that the plasma membrane of many cell types contains cholesterol-sphingolipid-rich microdomains. Here, we analyze the role of these microdomains in promoting oligomerization of the bacterial pore-forming toxin aerolysin. Aerolysin binds to cells, via glycosyl phosphatidylinositol-anchored receptors, as a hydrophilic soluble protein that must polymerize into an amphipathic ring-like complex to form a pore. We first show that oligomerization can occur at >10(5)-fold lower toxin concentration at the surface of living cells than in solution. Our observations indicate that it is not merely the number of receptors on the target cell that is important for toxin sensitivity, but their ability to associate transiently with detergent resistant microdomains. Oligomerization appears to be promoted by the fact that the toxin bound to its glycosyl phosphatidylinositol-anchored receptors, can be recruited into these microdomains, which act as concentration devices.  相似文献   

2.
Thy-1 is a developmentally regulated cell surface glycoprotein in nervous tissue. An inositol-containing glycolipid structure is covalently attached to its carboxyl terminus, which anchors the protein to the cell membrane. In the present paper we report the characterization of a water-soluble form of Thy-1, purified from human cerebrospinal fluid (CSF). In contrast to the membrane-bound form of Thy-1 (M-Thy-1) isolated from human brain cerebral cortex, CSF-Thy-1 behaved like a completely hydrophilic glycoprotein, as analyzed by charge-shift electrophoresis in the presence of detergents and by liposome incorporation experiments. CSF-Thy-1 displayed a slightly higher apparent molecular weight in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than M-Thy-1. Digestions with endoglycosidases demonstrated that this difference in size was correlated to different processing of the three N-linked oligosaccharides, and the mobilities of the deglycosylated molecules were indistinguishable in sodium dodecyl sulfate gels. A Pronase-resistant carboxyl-terminal fragment was isolated from the CSF-Thy-1 after trypsin digestion and compared with the corresponding structure of M-Thy-1, obtained by treatment either with bacterial phosphatidylinositol-specific phospholipase C or with human serum (as a source of phosphatidylinositol-specific phospholipase D). The major fragment from CSF-Thy-1 behaved identically, with respect to size and charge, to the carboxyl-terminal fragment from M-Thy-1 solubilized by phospholipase D. These findings suggest an in vivo release of phosphatidylinositol-anchored Thy-1 glycoprotein from brain cells by the action of an endogenous phospholipase D.  相似文献   

3.
Mutants that lack expression of phosphatidylinositol (PI)-anchored proteins were derived from the human B lymphoblastoid JY cell line. It was demonstrated that unlike wild-type cells, which normally express both a transmembrane and a PI-linked form of LFA-3 glycoprotein, the mutant cells expressed only the transmembrane form of LFA-3. [3H]Ethanolamine was not incorporated into LFA-3 of mutant cells, indicating that the anchor moiety was entirely missing. Blockade of normal biosynthesis of the PI-anchored form led to accumulation of two intermediates that may have intact and truncated polypeptide chains. The truncated LFA-3, which was not attached to the cell membrane, was secreted by mutant cells into culture supernatants. A possible division of adhesion function between the two forms of LFA-3 was studied by using the JY cell lines as targets for CTL. Wild-type and mutant JY cells formed conjugates with CTL and were subsequently lysed to a similar extent. In addition, wild-type and mutant JY cells stimulated CTL proliferation to the same extent. Antibody-blocking experiments demonstrated a predominant role for the CD2/LFA-3 pathway in interaction of both wild-type and mutant cells with CTL. Because E exclusively express only the PI-linked LFA-3 form, and this form is known to mediate cell adhesion, the present results indicate that the two distinct membrane-anchored LFA-3 forms are each capable of mediating adhesion. A possible division of signaling functions between the two forms of LFA-3 is under investigation.  相似文献   

4.
Intercellular adhesion molecule 1 (ICAM-1) is a 90 kd inducible surface glycoprotein that promotes adhesion in immunological and inflammatory reactions. ICAM-1 is a ligand of lymphocyte function-associated antigen-1 (LFA-1), an alpha beta complex that is a member of the integrin family of cell-cell and cell-matrix receptors. ICAM-1 is encoded by an inducible 3.3 kb mRNA. The amino acid sequence specifies an integral membrane protein with an extracellular domain of 453 residues containing five immunoglobulin-like domains. Highest homology is found with neural cell adhesion molecule (NCAM) and myelin-associated glycoprotein (MAG), which also contain five Ig-like domains. NCAM and MAG are nervous system adhesion molecules, but unlike ICAM-1, NCAM is homophilic. The ICAM-1 and LFA-1 interaction is heterophilic and unusual in that it is between members of the immunoglobulin and intergrin families. Unlike other integrin ligands, ICAM-1 does not contain an RGD sequence.  相似文献   

5.
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.  相似文献   

6.
CD2 (T11, the T cell E receptor), a nonpolymorphic 47- to 55-kDa glycoprotein, is a T cell-specific surface protein that plays an important role in T lymphocyte adhesion, signal transduction, and differentiation. A natural ligand of CD2 is lymphocyte function associated Ag-3 (LFA-3 (CD58)), a widely expressed glycoprotein of 50 to 70 kDa. The physiologic interaction of CD2 with LFA-3 functions to increase intercellular adhesion and plays a role in T cell activation. This interaction, however, in the absence of other stimuli, has not previously been shown to induce intracellular signals such as Ca2+ mobilization or IL-2 production. To investigate whether cAMP may play a role in ligand-triggered CD2-mediated signal transduction, we have studied the ability of purified LFA-3 and anti-CD2 mAb to induce changes in intracellular cAMP content in murine Ag-specific T cell hybridomas that stably express wild-type and mutated human CD2 molecules. By using a RIA sensitive to the femtomolar range and specific for cAMP, we demonstrate that purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3 alone to CD2-expressing hybridoma cells, however, did not stimulate phosphatidylinositol turnover nor IL-2 production. The cytoplasmic domain of CD2 is necessary for these ligand-induced cAMP changes, demonstrating that LFA-3 binding to CD2 transduces a signal to the cell. Experiments using the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine showed that CD2-mediated regulation of cAMP levels occurs primarily by the stimulation of cAMP production rather than by the inhibition of cAMP degradation. These results demonstrate that the interaction of LFA-3 with CD2, in the absence of other stimuli, is capable of initiating intracellular biochemical changes and suggest that CD2/LFA-3 interactions may regulate T cell function at least in part through the generation of intracellular cAMP.  相似文献   

7.
The cell surface molecules involved in the human cytolytic T lymphocyte (CTL)-synovial cell interaction may play an important role in T cell interactions with connective tissue mesenchymal cells. To examine the molecular basis for the CTL-synovial cell interaction, we immortalized synovial cell explants to establish the cell line SYN.SPP. The SYN.SPP cell line was compared to the established B lymphoblastoid cell line JY. Cell surface immunofluorescence demonstrated significantly different levels of the immunologically relevant cell surface molecules ICAM-1 and LFA-3. Both cell lines were used to stimulate CTL precursors. After several months in culture, CTL lines stimulated by the SYN.SPP and JY cell lines demonstrated HLA class I-directed cytolytic activity. The cell surface molecules utilized by the anti-SYN.SPP and anti-JY CTL lines were identified by monoclonal antibody (MAb) inhibition. MAb recognizing the CTL cell surface molecules CD3, CD8 and LFA-1 (CD11a) significantly inhibited CTL-mediated lysis of both target cells. An interesting observation was that the anti-SYN.SPP CTL line appeared to utilize the ICAM-1 and not the LFA-3 target cell molecule. In contrast, the anti-JY CTL line utilized the LFA-3 and not the ICAM-1 membrane molecule. These results indicate that CTL interactions with connective tissue mesenchymal cells may be regulated by a unique pattern of antigen nonspecific cell-cell interaction molecules.  相似文献   

8.
Cell-cell adhesion plays an important role in monocyte function. To investigate the molecular basis for monocyte adhesion, we used recombinant interferon-gamma to induce the formation of homotypic monocyte adhesions. The induction of homotypic adhesions correlated with the increased expression of the LFA-1 membrane molecule. LFA-1 surface expression was increased twofold, whereas expression levels of other monocyte surface molecules including CR3 and p150,95 were unchanged. The direct involvement of LFA-1 in monocyte adhesion was addressed by anti-LFA-1 monoclonal antibody inhibition of homotypic adhesions. Two monoclonal antibodies to distinct epitopes on the LFA-1 alpha-chain completely inhibited homotypic adhesions. Antibodies to a variety of other monocyte surface molecules, often present at higher cell surface density than LFA-1, did not inhibit homotypic adhesion. A panel of monoclonal antibodies that recognized different functional epitopes on the LFA-1 alpha-chain inhibited homotypic monocyte in a hierarchy identical to that observed in previous studies of cell-mediated cytotoxicity. These findings suggest that LFA-1 serves an adhesive function for human mononuclear phagocytes. In addition to providing a molecular basis for homotypic monocyte adhesions, the results suggest a more general role for LFA-1 in monocyte adhesion reactions.  相似文献   

9.
S D Marlin  T A Springer 《Cell》1987,51(5):813-819
Lymphocyte function-associated antigen 1 (LFA-1) is a leukocyte cell surface glycoprotein that promotes intercellular adhesion in immunological and inflammatory reactions. It is an alpha beta complex that is structurally related to receptors for extracellular matrix components, and thus belongs to the integrin family. ICAM-1 (intercellular adhesion molecule-1) is a distinct cell surface glycoprotein. Its broad distribution, regulated expression in inflammation, and involvement in LFA-1-dependent cell-cell adhesion have suggested that ICAM-1 may be a ligand for LFA-1. We have purified ICAM-1 and incorporated it into artificial supported lipid membranes. LFA-1+ but not LFA-1- cells bound to ICAM-1 in the artificial membranes, and the binding could be specifically inhibited by anti-ICAM-1 treatment of the membranes or by anti-LFA-1 treatment of the cells. The cell binding to ICAM-1 required metabolic energy production, an intact cytoskeleton, and the presence of Mg2+ and was temperature dependent, characteristics of LFA-1- and ICAM-1-dependent cell-cell adhesion.  相似文献   

10.
Sequences encoding the transmembrane domain of the Rous sarcoma virus envelope (Env) glycoprotein were deleted and replaced with sequences that signal addition of a glycosyl phosphatidylinositol (GPI) membrane anchor. Stable NIH 3T3 cell lines expressing either the wild-type transmembrane-anchored Env or the Env chimera with a GPI tail were established. The GPI-anchored envelope glycoprotein is expressed, oligomerized, and transported to the cell surface in a manner identical to that of its wild-type transmembrane-anchored counterpart. The GPI-linked protein is quantitatively removed from the cell surface by treatment with phosphatidylinositol phospholipase C. The phosphatidylinositol phospholipase C-released, water-soluble Env glycoprotein ectodomain retains the wild-type oligomeric structure and provides a useful tool for studying the subgroup-specific binding and fusion activities of a prototypic retroviral Env glycoprotein.  相似文献   

11.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.  相似文献   

12.
A variety of monoclonal antibodies has been used to study the roles of surface proteins in neutrophil function. Many monoclonal antibodies that bind to human neutrophils react with the oligosaccharide lacto-N-fucopentaose III. Sequential immunoprecipitation of radiolabeled proteins from extracts of neutrophils labeled at the cell surface with 125I, and partial proteolysis peptide mapping studies were used to compare the proteins recognized by several widely used monoclonal antibodies that react with human neutrophils. The monoclonal antibodies that react with lacto-N-fucopentaose III (CD15) immunoprecipitated five distinct neutrophil surface proteins. The data indicate that CD15 monoclonal antibodies react with a subset of the LFA-1/HMac-1/gp 150,95 glycoprotein family as well as with CR1 on human neutrophils. The CD15 antibodies studied differed in their avidities for these proteins. The molecules immunoprecipitated by the CD15 antibodies tested were more resistant to proteolysis than the homologous proteins immunoprecipitated by the other monoclonal antibodies studied that react directly with the alpha M (CD11) or beta (CD18) chains of the LFA-1/HMac-1/gp 150,95 glycoprotein family. Some of the differences in antibody reactivity and protease sensitivity of the membrane proteins recognized by these antibodies may be due to differences in glycosylation. The data suggest that the antibodies studied can detect differences in post-translational modification among copies of certain surface proteins.  相似文献   

13.
The positioning of adhesion molecules relative to the microtopography of the cell surface has a significant influence on the molecule's availability to form adhesive contacts. Measurements of the ratio of fluorescence intensity per unit area in epi-fluorescence images versus total internal reflection fluorescence images provides a means to assess the relative accessibility for bond formation of different fluorescently labeled molecules in cells pressed against a flat substrate. Measurements of the four principal adhesion molecules on human neutrophils reveal that L-selectin has the highest ratio of total internal reflection fluorescence/epi intensity, and that P-selectin glycoprotein ligand-1 (PSGL-1) and the integrins αLβ2 (LFA-1) and αMβ2 (Mac-1) have ratios similar to each other but lower than for L-selectin. All of the ratios increased with increasing impingement, indicating an alteration of surface topography with increasing surface compression. These results are consistent with model predictions for molecules concentrated near the tips of microvilli in the case of L-selectin, and sequestered away from the microvillus tips in the case of LFA-1, Mac-1, and PSGL-1. The results confirm differences among adhesion molecules in their surface distribution and reveal how the availability of specific adhesion molecules is altered by mechanical compression of the surface in live cells.  相似文献   

14.
《The Journal of cell biology》1994,124(6):1061-1070
Transition of leukocyte function-associated antigen-1 (LFA-1), from an inactive into an activate state depends on the presence of extracellular Mg2+ and/or Ca2+ ions. Although Mg2+ is directly involved in ligand binding, the role of Ca2+ in LFA-1 mediated adhesion remained obscure. We now demonstrate that binding of Ca2+, but not Mg2+, directly correlates with clustering of LFA-1 molecules at the cell surface of T cells, thereby facilitating LFA-1-ligand interaction. Using a reporter antibody (NKI-L16) that recognizes a Ca(2+)-dependent epitope on LFA-1, we found that Ca2+ can be bound by LFA-1 with different strength. We noticed that weak binding of Ca2+ is associated with a dispersed LFA-1 surface distribution on T cells and with non- responsiveness of these cells to stimuli known to activate LFA-1. In contrast, stable binding of Ca2+ by LFA-1 correlates with a patch-like surface distribution and vivid ligand binding after activation of LFA- 1. Mg(2+)-dependent ligand binding does not affect binding of Ca2+ by LFA-1 as measured by NKI-L16 expression, suggesting that Mg2+ binds to a distinct site, and that both cations are important to mediate adhesion. Only Sr2+ ions can replace Ca2+ to express the L16 epitope, and to induce clustering of LFA-1 at the cell surface. We conclude that Ca2+ is involved in avidity regulation of LFA-1 by clustering of LFA-1 molecules at the cell surface, whereas Mg2+ is important in regulation of the affinity of LFA-1 for its ligands.  相似文献   

15.
The inositol isomer composition of phosphoinositides, polyphosphoinositols, phosphatidylinositol-linked glycans, and glycosyl phosphatidylinositol-anchored proteins of logarithmic phase Tetrahymena vorax was determined by GC-MS analysis of trimethylsilylimadazole derivatives. The most abundant inositol found was the myo-isomer; however, appreciable percentages of scylloinositol were present in the free inositol pool, phosphatidylinositol-linked glycan fraction, and glycosyl phosphatidylinositol-anchored protein fraction. Trace quantities of chiro- and neo-inositols also were present.  相似文献   

16.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

17.
A form of circulating ICAM-1 in human serum.   总被引:85,自引:0,他引:85  
A circulating form of the usually membrane-bound intercellular adhesion molecule-1 (ICAM-1) was identified and characterized in normal human serum, and in sera from patients with leukocyte adhesion deficiency (LAD). The molecule, designated circulating ICAM-1 (cICAM-1) was detected and quantitated by sandwich ELISA. Levels of cICAM-1 in sera from normal individuals ranged from 100 to 200 ng/ml. Sera from LAD patients had elevated cICAM-1 levels ranging from 200 to 700 ng/ml. The elevated levels of cICAM-1 in LAD sera may be due to an inability to adsorb cICAM-1 to cell-bound LFA-1 or may be an indirect result of the pathology accompanying the syndrome. cICAM-1 bound to mAb specific for four distinct ICAM-1 epitopes localized in domains D1, D2, D4, and D5, and displayed similar molecular size properties as recombinant soluble ICAM-1 on FPLC size-exclusion chromatography. When immobilized via a domain D5-specific mAb, cICAM-1 mediated function (LFA-1)-dependent lymphocyte adhesion equivalent to sICAM-1. These data indicate that cICAM-1 contains most, if not all, of the five extracellular domains of membrane ICAM-1, as well as the ability to bind specifically to LFA-1. The cellular source of cICAM-1 appeared to be from mononuclear cells; only lymphoid cell lines or primary PBMC cultures had detectable levels of cICAM-1 in cell culture supernatants. Because cICAM-1 retains the ability to bind specifically to LFA-1, it may act to regulate cell adhesion by promoting de-adhesion. Alternatively, cICAM-1 may be the indirect consequence of inflammation or tissue damage. As such, the detection of cICAM-1 could be useful as a marker of inflammatory disease.  相似文献   

18.
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD ~ 140 μM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgGl PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG 1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG 1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion.  相似文献   

19.
Three cell surface antigens associated with the cytolytic T lymphocyte(CTL)-target cell interaction were identified by generation of monoclonal antibodies (MAb) against OKT4+, HLA-DR-specific CTL and selection for inhibition of cytolysis in a 51Cr-release assay. These MAb block cytolysis by both OKT4+ and OKT8+ CTL and the proliferative responses to PHA and the mixed lymphocyte response (MLR). LFA-1 is an antigen widely distributed on lymphoid tissues and is composed of two polypeptides of 177,000 and 95,000 Mr on all cell types studied. Anti-LFA-1 MAb block NK cell-mediated cytolysis in addition to T lymphocyte-mediated cytotoxicity and proliferation. LFA-2 (Mr = 55,000 to 47,000), a determinant on the sheep red blood cell receptor, is expressed by T cells but not B cells and appears specific for T cell functions. LFA-3 (Mr = 60,000) is a widely distributed antigen present on both hematopoietic and nonhematopoietic tissues and appears to only be involved in T cell functions. MAb to LFA-1 and LFA-2 inhibit function by binding to effector cell surface molecules, whereas anti-LFA-3 MAb appear to block by binding to the target cells. Together with previously described molecules, LFA-1, LFA-2, and LFA-3 demonstrate the complexity of CTL-mediated cytotoxicity at the molecular level.  相似文献   

20.
We asked whether we could distinguish the roles of the human lymphocyte membrane proteins LFA-1, LFA-2, and LFA-3 in the function of CTL-mediated killing. Little is known about the functions of these molecularly distinct proteins beyond the facts that i) binding of a monoclonal antibody (MAb) to any one of them is sufficient to inhibit killing, ii) that in each case inhibition involves prevention of CTL-target cell conjugate formation, and iii) that MAb to LFA-1 and LFA-2 inhibit best when bound to the CTL, whereas anti-LFA-3 inhibits only when bound to the target cell. This latter is despite the fact that (in our test system) LFA-1 and LFA-3 are expressed both on the CTL and on the target. When the target cells were pretreated with trypsin, the sensitivity of CTL-mediated killing was affected in a different way for each site. Inhibition of anti-LFA-1 was increased by approximately 20-fold. Inhibition by anti-LFA-2 was unaffected. Inhibition by anti-LFA-3 was abolished. Trypsin did not remove the specific antigens recognized by the various CTL, HLA-A,B,C or HLA-DR. Nor did it remove LFA-1 from the target cell. It did, however, selectively remove LFA-3 from the target cell. These results indicate, for the first time, that LFA-1 and LFA-2 have functionally distinct roles. They suggest that an unidentified trypsin-sensitive target cell molecule, operationally designated the "trypsin-sensitive counter blocker" (TSCB), plays an important role in the function of LFA-1, possibly by providing a target cell binding site for LFA-1 on the CTL. The hypothesis that this TSCB is identical to LFA-3 (and the related possibility that LFA-1 and LFA-3 are mutual ligands) is not favored by our data, but is not excluded. Finally, the data indicate that the mechanisms by which MAb inhibit killing differ at the LFA-1 and LFA-3 sites. They are consistent with LFA-1 providing adhesion strengthening by binding to another site (the TSCB?) and with LFA-3 delivering an inhibitory signal when provoked with MAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号