首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

2.
Lu  Z; Neumann  P 《Journal of experimental botany》1998,49(329):1945-1952
The possible occurrence of species diversity in mechanisms underlying leaf-growth inhibition by water stress, was investigated in related cereal plants. Water stress was generated by additions of the osmoticum polyethylene glycol 6000 to the root medium. Effects of external water potentials ranging from 0 to -0.6MPa, on early growth parameters of emerging leaves were measured under controlled environment conditions, using pairs of maize, barley or rice genotypes with differing resistance to water stress under field conditions. Water potentials of -0.4 MPa for 24 h, similarly reduced leaf growth, comparative production rates of leaf epidermal cells and cell size in all genotypes. These reductions did not appear to be caused by reductions in the osmotic potential gradients between the expanding leaf cells and their external water source. However, growth inhibition in maize and barley, was accompanied by significant reductions in comparative leaf and cell wall extensibility. Moreover, regression plots revealed good linear correlations (r=0.83** for maize and r=0.77** for barley) between the reductions in leaf growth induced by a series of water potentials and associated reductions in leaf extensibility. In contrast, the reduction in growth of rice leaves, was not accompanied by any significant changes in leaf or cell wall extensibility. Similarly, regression plots revealed poor correlations between leaf growth and leaf extensibility in both paddy and upland rice (r=0.17 and r=0.07, respectively). Thus, despite numerous inter-species similarities, biophysical changes associated with stress-induced leaf growth inhibition in maize and barley, differed from those in rice.Key words: Cell walls, extensibility, water stress, cereal diversity, leaf growth.   相似文献   

3.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

4.
The effect of exposure to elevated CO2 on the processes of leafcell production and leaf cell expansion was studied using primaryleaves of Phaseolus vulgaris L. Cell division and expansionwere separated temporally by exposing seedlings to dim red lightfor 10 d (when leaf cell division was completed) followed byexposure to bright white light for 14 d (when leaf growth wasentirely dependent on cell expansion). When plants were exposedto elevated CO2 during the phase of cell expansion, epidermalcell size and leaf area development were stimulated. Three piecesof evidence suggest that this occurred as a result of increasedcell wall loosening and extensibility, (i) cell wall extensibility(WEx, measured as tensiometric extension using an Instron) wassignificantly increased, (ii) cell wall yield turgor (V, MPa)was reduced and (iii) xyloglucan endotransglycosylase (XET)enzyme activity was significantly increased. When plants wereexposed to elevated CO2 during the phase of cell division, thenumber of epidermal cells was increased whilst final cell sizewas significantly reduced and this was associated with reducedfinal leaf area, WEx and XET activity. When plants were exposedto elevated CO2 during both phases of cell division and expansion,leaf area development was not affected. For this treatment,however, the number of epidermal cells was increased, but cellexpansion was inhibited, despite exposure to elevated CO2 duringthe expansion phase. Assessments were also made of the spatialpatterns of WEx across the expanding leaf lamina and the datasuggest that exposure to elevated CO2 during the phase of leafexpansion may lead to enhanced extensibility particularly atbasal leaf margins which may result in altered leaf shape. The data show that both cell production and expansion were stimulatedby elevated CO2, but that leaf growth was only enhanced by exposureto elevated CO2 in the cell expansion phase of leaf development.Increased leaf cell expansion is, therefore, an important mechanismfor enhanced leaf growth in elevated CO2, whilst the importanceof increased leaf cell production in elevated CO2 remains tobe elucidated. Key words: Phaseolus vulgaris L., dwarf beans, elevated CO2, biophysics of cell expansion, xyloglucan endotransglycosylase, XET, water relations  相似文献   

5.
The Effects of Root Pruning on the Water Relations of Helianthus annuus L.   总被引:3,自引:0,他引:3  
Four-week-old Helianthus annuus plants, grown in both soil andliquid culture, were root pruned at the point of root attachmentto the stem. Transpiration, leaf water potential and leaf conductivitywere monitored for several days after pruning. Pruning loweredtranspiration and leaf conductivity in amounts proportionalto the amount of pruning. In some experiments pruning causeda slight lowering of leaf water potential, while in others nopruning effect could be found. The effects of pruning varieddepending upon culture conditions, with greater effects beingfound in soil and unaerated liquid culture than in aerated liquidculture. Soil water potential did not appear to have a stronginfluence on the magnitude of the pruning effect. The effectsof root pruning are less than would be predicted by an Ohm'sLaw analysis of flow; possible reasons for this are discussed.  相似文献   

6.
Seedlings of Brassica oleracea var. gemmifera DC. (Brusselssprouts) were grown in four pot sizes over a 4-week period.Whole plant, stem, root and foliage d. wts and foliage area,together with specific leaf area, leaf area ratio and numberof leaves initiated were reduced by restricting rooting space.Individual leaves showed similar reductions in d. wt and area,with the effect being more pronounced in later-formed leaves.Cell counts and measurements on the epidermis and palisade mesophylllayers of the first four leaves showed that the reduction ingrowth was due to reduced cell division. Cell numbers in thefirst-formed leaf were halved over the range of pot sizes used,and there was a progressively greater reduction in cell numbersin later-formed leaves. There was some tendency for cell sizeto decrease with decreasing rooting space, but this was notgeneral and was most marked between plants grown in the twosmallest pot sizes. Brassica oleracea var. gemmifera, Brussels sprouts, rooting space, growth analysis, leaf growth, cell numbers, cell sizes  相似文献   

7.
Although it is well established that the root growth in manyspecies is very sensitive to mechanical impedance or to confinementin small volumes, little is known about the consequent effectson growth of the whole plant and the mechanisms involved. Thiswork investigated the effects of root confinement on the waterrelations, growth and assimilate partitioning of tomato (Lycopersiconesculentum Mill) grown in solution culture. Six-week old plants were transferred to either 4500 ml or 75ml containers filled with nutrient solution, and allowed togrow for 14 d. Transpiration, leaf-air temperature differences,and leaf diffusive resistances were measured frequently. Leaf,stem and shoot dry masses, leaf area and root length, were estimatedwhen the treatments were imposed and at the end of the experiment.After 14 d growth the root and shoot hydraulic resistances wereestimated from measurements of leaf water potential and transpirationrate, using a steady-state technique. Confining root growth to the small containers substantiallyreduced shoot and root growth and increased the proportion oftotal dry matter present in the stems. These effects were dueto drought stress. The hydraulic resistance of the root systemwas greatest in the confined plants. This led to more negativeleaf water potentials, increased leaf diffusive resistance,and reduced the net assimilation rate by a factor of 2.5. Transpirationper unit leaf area was less affected. However, cumulative transpirationwas also reduced by a factor of 2.5. mostly because of the smallerleaf area on the confined plants. Root hydraulic resistivitywas measured at 3.1 x 1012s m–1 in the control treatment,but increased to 3.9 x 1012 s m–1 for roots in the smallcontainer. The mechanisms by which root confinement caused drought stressand disrupted the pattern of assimilate partitioning are discussedin detail. Assimilate partitioning, Lycopersicon esculentum, root confinement, plant growth, root growth, root resistance, shoot resistance, tomato, transpiration, water-use efficiency  相似文献   

8.
Chromosaponin I (CSI), at 3 m M , stimulates the growth of lettuce roots ( Lactuca sativa L. cv. Grand Rapids) with increasing fresh weight and decreasing root diameter compared with control. To analyze the mechanism of action of CSI, mechanical properties of lettuce root cell walls were examined with a tensiometer and the osmotic potential of the cell sap was measured with a vapor pressure osmometer. The mechanical extensibility of the cell wall was increased by CSI treatment, while the osmotic potential remained constant. Under osmotic stress, through addition of 0.225 M mannitol, the mechanical extensibility of the cell wall was increased before stimulation of growth was observed. These results suggest that cell wall-loosening is involved in the growth stimulation induced by CSI.  相似文献   

9.
Primary roots of intact maize plants (Zea mays L.) grown for several days in nutrient solutions containing 100 mol m−3 NaCl and additional calcium, had relatively inhibited rates of elongation. Possible physical restraints underlying this salt induced inhibition were investigated. The inhibition did not involve reductions in osmotic potential gradients and turgor in the tip tissues responsible for root elongation growth. The apparent yield threshold pressure, which is related to capacity of cell walls to undergo loosening by stress relaxation, was estimated psychrometrically in excised root tips. Salinity increased yield threshold values. Comparative root extensibility values were obtained for intact plants by determining the initial (1 min) increase in root elongation rate induced by an 0.1 MPa osmotic jump. Comparative extensibility was significantly reduced in the salinized root tips. Salinity did not reduce capacities for water efflux and associated elastic contraction in root tip tissues of intact plants exposed to hypertonic mannitol. We conclude that cell wall hardening in the elongating root tips is an important component of root growth inhibition induced by long-term salinization.  相似文献   

10.
Sorghum plants were grown in the laboratory with the root systemof each plant split between two pots. Three split pot treatmentswere established: (– –) treatment, where both halvesof the root were free from Striga; (– +) treatment, wherethe soil in one half of the pot had been inoculated with Strigaseed; (+ +) treatment, where the soil in both halves of thepot had been inoculated with Striga. Seed, stem and leaf weight were reduced by 82, 60 and 26 percent respectively in (+ +) plants compared to (– –)plants. Partially infected plants (– +) behaved similarlyto (+ +) plants. Rates of light saturating carbon dioxide fixation in (+ +) and(– +) plants were only 60 per cent of those measured in(– –) plants. This reduction was independent ofchanges in stomatal conductance. The effects of Striga on the growth and photosynthesis of sorghumappear to be independent of the degree of parasitism to whichthe host is subjected. The difference in production betweeninfected and uninfected plants was greater than could be accountedfor in term of competition with the parasite for resources,and Striga appears to have a pathological effect on the host. Sorghum, Striga, parasitic angiosperm, growth, photosynthesis  相似文献   

11.
Use of Rotary Variable Displacement Transducers attached togrowing primary leaves of Phaseolus vulgaris has shown thatwhen the root systems were rapidly cooled from 23°C to 10°Cleaf extension rate fell to very low values within a few minutes.When the root systems were returned to 23°C leaf extensionincreased almost immediately to overshoot the control rateswithin 5–10 min, before declining to control values overthe next 50–60 min. When lights went off at the end ofthe day cycle there was an immediate and very large increasein leaf extension rate in both root-cooled and control plants;the rate then slowly declined over the next 60 min. This effectwas seen when the photoperiod was artificially shortened orlengthened and was reduced in magnitude when the photoperiodwas ended gradually by dimming the lights. The effect was notattributable to effects on leaf temperature but appears to bethe result of an endogenous rhythm interacting with the endof the photoperiod. At the beginning of the photoperiod therewas a gradual reduction in leaf extension rate occurring over30–45 min. Key words: Phaseolus vulgaris, leaf growth, extension rate, root cooling, wall extensibility, turgor  相似文献   

12.
The effects of mechanical stress on whole root systems was investigatedusing beds of solid glass spheres (ballotini) continuously suppliedwith aerated nutrient solution. As noted in earlier experiments,increased mechanical impedance slowed root extension and alteredcell size and number; it also caused distortion of the rootapex, stimulated growth of lateral shoot meristems, and inducedthe formation of nodal roots. The development of lateral branchroots was enhanced and where root axes curved around ballotinilateral roots formed preferentially on the outer (convex) sidewhereas root hairs developed on the inner (concave) side. After roots were relieved from mechanical stress at least 3d elapsed before the rate of extension growth equalled thatof unimpeded plants. When intact Zea mays root apices first made contact with ballotinitheir elongation was slowed by 70% for about 10 min; where rootcaps were removed before the roots made contact, no such effectswere seen. We discuss the general nature of the mechanism of response tomechanical stress.  相似文献   

13.
A creep extensiometer technique was used to provide direct evidence that short (20 min) and long-term (3d) exposures of roots to growth inhibitory levels of salinity (100mol m-3 NaCl) induce reductions in the irreversible extension capacity of cell walls in the leaf elongation zone of intact maize seedlings (Zea mays L.). The long-term inhibition of cell wall extension capacity was reversed within 20 min of salt withdrawal from the root medium. Inhibited elongation of leaf epidermal tissues was also reversed after salt removal. The salt-induced changes in wall extension capacity were detected using in vivo and in vitro assays (shortly after localized freeze/thaw treatment of the basal elongation zone). The rapid reversal of the inhibition of wall extensibility and leaf growth after salt removal from root medium of long-term salinized plants, suggested that neither deficiencies in growth essential mineral nutrients nor toxic effects of NaCl on plasmamembrane viability were directly involved in the inhibition of leaf growth. There was consistent agreement between the scale, direction and timing of salinity-induced changes in leaf elongation growth and wall extension capacity. Rapid metabolically regulated changes in the physical properties of growing cell walls, caused by osmotic (or other) effects, appear to be a factor regulating maize leaf growth responses to root salinization.  相似文献   

14.
Heterogeneity within the root environment results in differentialgrowth within root systems. The response of five Phaseolus vulgarisL. cultivars to non-uniform root aeration was evaluated. Threetreatments were applied to a split root system for a periodof 72 h. Treatments consisted of an aerated control, a non-aeratedcontrol (both halves non-aerated, using N2). and localized anoxia(one-half the root system aerated and the remaining half subjectedto N2). Shoot and root growth were reduced in the anoxic controlbut not in the aerated control or localized anoxia treatment. Root growth was greatest in the aerated portion of the localizedanoxia treatment for all genotypes. Contributions of the rootcomponents to the compensatory responses differed dependingon the plant cultivar examined. The growth of branched and lateralroots present before the treatment period increased by 65% inline 31908. A 50% increase in the growth of lateral roots whichemerged during the treatment period occurred in another line(Swan Valley). Other genotypes responded in an intermediatemanner. These observations indicate differences in cultivarresponses to localized soil stress. Key words: Phaseolus vulgaris L., Anoxia, Root growth  相似文献   

15.
The objective of this study was to assess the relative rolesof leaf water status and root-sourced signals in mediating beanleaf responses to root hypoxia. To do so, the roots of beanplants under varied VPD (0.95 kPa to 0.25 KPa) were made hypoxic.Under all conditions, leaf growth rates and stomatal conductanceswere reduced. There was a transitory decline in leaf water potentialat high VPD which accounted for the initial reduction in leafgrowth rates and stomatal conductance. At low VPD, no waterdeficits were detected. Leaf growth inhibition and reduced stomatalconductance under low VPD treatments were unrelated to leafwater status and must be induced by some other factor. In vitrogrowth of leaf discs was reduced by xylem sap collected fromhypoxic roots. Exogenously applied ABA, at high concentrationsin KCl and sucrose, or at low concentrations diluted in xylemsap from aerated plants, inhibited in vitro growth of leaf discs.Applications of ABA in the transpiration stream reduced stomatalconductance.  相似文献   

16.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

17.
Plants of Acacia and Eucalyptus species were grown under differentlevels of shading, nutrition, and irrigation to assess the effectof these factors on plant water use. Water use per unit of leaf(phyllode) area was affected only by the irrigation treatment,control plants that had received water daily using appreciablymore water than plants that had been repeatedly subjected towater stress. Water stress conditioning had little or no effecton plant height, leaf (phyllode) area, or minimum stomatal resistancein any of the species. Detailed study of the water stress conditioningof Eucalyptus robusta showed that controls used 46% more waterthan conditioned plants. Leaf area and plant height were unaffectedby conditioning. Control of transpiration was not due to stomatalfunctioning, both sets of plants operating with the same leafdiffusive resistance under conditions of ready water availability.Hydraulic conductivity of the intact root system was loweredby conditioning and it is suggested that this was due, at leastin part, to the effect that conditioning had on root xylem conductivity.Specific conductivity of stem sections was lowered by waterstress conditioning. Water stress avoidance was also associatedwith a more pronounced tendency for stomata to close prior towilting and with a higher level of leaf resistance which couldbe maintained at a low leaf water potential. Conditioned plantsexhibited drought tolerance in their ability to control lossof water from the leaf at lower leaf water potentials than thecontrols.  相似文献   

18.
DALE  J. E. 《Annals of botany》1982,50(6):851-858
Plants of Heron wheat were grown at 20 and 15 °C and inquantum flux densities of 400 and 200 µmol m–2 s–1.At completion of expansion of the first or second leaf, plantswere transferred between temperatures and quantum flux densities.Final size and cell number were measured for each of the firstfour main-stem leaves. Leaf area was affected only slightlyby treatment and effects on leaf length and width were alsosmall. It was concluded that leaf extension rate, which waslower at the lower temperature and in the lower light regime,is inversely related to the duration of leaf expansion. Leafdry wt was higher for plants grown in high light and for plantsgrown at 15 °C; transfer treatments led to readjustmentswhereby dry wts of leaves expanded after transfer resembledthose of leaves on plants kept throughout in the post-transferconditions. Leaf cell number was not affected by treatment but mean drywt per cell was significantly greater in high light, and forthe first two leaves, at 15 °C. There was a major and highlysignificant effect of treatment on the ratio of dry: fresh wtper cell, this being larger for leaves in high light. Transfertreatments between light regimes led to rapid changes in expandingleaves as was found for leaf dry wt. It was concluded that theexpanding grass leaf is much less dependent on older leavesto provide the necessary materials for cell division and expansionthan is the dicotyledon leaf. It is suggested that the increasein cell dry wt in high light is associated with an increasein cell wall material which is under photomorphogenic control. Triticum aestivum, wheat, leaf growth, cell division, cell expansion, cell size  相似文献   

19.
COUTTS  M. P. 《Annals of botany》1981,47(6):747-753
Two-year-old Sitka spruce [Picea sitchensis (Bong.) Carr.] seedlings,either actively growing or dormant, were waterlogged in a growthroom at 15 °C. Shoot and root growth, transpiration andleaf water potential were observed. In actively-growing plants shoot extension continued after waterlogging,though at a reduced rate, and shoots of dormant plants brokebud and extended during the waterlogging period. Root growthwas suppressed by waterlogging in both types of plant. The 22day waterlogging treatment eventually killed the actively-growingplants but plants which were dormant at the time of waterloggingwere more tolerant. Changes in plant water relations after waterloggingwere entirely different depending on the condition of the plantswhen the soil was flooded. Dormant plants showed a gradual reductionin transpiration and increased water stress over the waterloggingperiod; after the soil was drained leaf water potential increasedto equal the value of control plants which had been maintainedin a freely drained condition, but transpiration did not increaseuntil root growth began. Actively-growing plants exhibited amore complex behaviour, characterized by a very rapid reductionin transpiration after waterlogging, accompanied by a briefperiod of water stress, followed by a period of increasing transpirationrate in the absence of water stress. Finally a second reductionin transpiration occurred and water stress increased as theseedlings died. The importance of the stage of activity of theroot system to the response of plants to waterlogging is discussed. Picea sitchensis (Bong.) Carr., Sitka spruce, waterlogging, water relations, dormancy, transpiration, water potential  相似文献   

20.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1986,58(3):321-331
Groundsel (Senecio vulgaris L.), healthy or infected with therust fungus Puccinia lagenophorae Cooke, was grown at a rangeof nutrient concentrations in sand culture. There were statisticallysignificant interactions between the effects of infection andnutrient supply upon the dry weights of stems, leaves, rootsand reproductive tissues, leaf area and cumulative capitulumproduction. This interaction occurred since infection causedsignificant inhibitions of growth only at moderate or high nutrientconcentrations. At low concentrations rusted plants were similarto or slightly larger than controls. Both in controls and rustedplants root: shoot ratios increased as nutrient supply declined.The ratio of root: shoot dry weight was consistently reducedby infection whilst root length: leaf area ratio was relativelyunchanged. More detailed investigations confirmed that infection had littleeffect on plant growth under nutrient deficient conditions despitesuppression of the host's ability to increase root: shoot ratiosin response to nutrient stress. This reflected the inhibitionof relative growth rates in rusted plants at high but not lownutrient concentrations, which in turn reflected reduced netassimilation rates (NAR). Increases in leaf-area ratio (LAR)often ameliorated the decline in NAR in rusted plants. Senecio vulgaris L., Puccinia lagenophorae Cooke, nutrient deficiency, growth, root: shoot ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号