首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concept of “prion-like” has been proposed to explain the pathogenic mechanism of the principal neurodegenerative disorders associated with protein misfolding, including Alzheimer disease (AD). Other evidence relates prion protein with AD: the cellular prion protein (PrPC) binds β amyloid oligomers, allegedly responsible for the neurodegeneration in AD, mediating their toxic effects. We and others have confirmed the high-affinity binding between β amyloid oligomers and PrPC, but we were not able to assess the functional consequences of this interaction using behavioral investigations and in vitro tests. This discrepancy rather than being resolved with the classic explanations, differencies in methodological aspects, has been reinforced by new data from different sources. Here we present data obtained with PrP antibody that not interfere with the neurotoxic activity of β amyloid oligomers. Since the potential role of the PrPC in the neuronal dysfunction induced by β amyloid oligomers is an important issue, find reasonable explanation of the inconsistent results is needed. Even more important however is the relevance of this interaction in the context of the disease, so as to develop valid therapeutic strategies.  相似文献   

2.
The post-translational citrullination (deimination) process is mediated by peptidylarginine deiminases (PADs), which convert peptidylarginine into peptidylcitrulline in the presence of high calcium concentrations. Over the past decade, PADs and protein citrullination have been commonly implicated as abnormal pathological features in neurodegeneration and inflammatory responses associated with diseases such as multiple sclerosis, Alzheimer disease and rheumatoid arthritis. Based on this evidence, we investigated the roles of PADs and citrullination in the pathogenesis of prion diseases. Prion diseases (also known as transmissible spongiform encephalopathies) are fatal neurodegenerative diseases that are pathologically well characterized as the accumulation of disease-associated misfolded prion proteins, spongiform changes, glial cell activation and neuronal loss. We previously demonstrated that the upregulation of PAD2, mainly found in reactive astrocytes of infected brains, leads to excessive citrullination, which is correlated with disease progression. Further, we demonstrated that various cytoskeletal and energy metabolism-associated proteins are particularly vulnerable to citrullination. Our recent in vivo and in vitro studies elicited altered functions of enolase as the result of citrullination; these altered functions included reduced enzyme activity, increased protease sensitivity and enhanced plasminogen-binding affinity. These findings suggest that PAD2 and citrullinated proteins may play a key role in the brain pathology of prion diseases. By extension, we believe that abnormal increases in protein citrullination may be strong evidence of neurodegeneration.  相似文献   

3.
The efficient expression of exogenous prion protein (PrP) molecules in mouse neuroblastoma cells that are chronically infected with murine scrapie prions (ScN2a cells; Butler, D.A., et al., 1988, J. Virol. 62, 1558-1564) and in transgenic mice is described. This technology allows investigation of the PrP molecule for structural regions involved in determining species specificity, as well as ablation experiments designed to address the functionality of particular regions of the PrP molecule. Previous reports demonstrated that the PrP gene specifies the host range for susceptibility of transgenic animals to prions (Scott, M., et al., 1989, Cell 59, 847-857; Prusiner, S.B., et al., 1990, Cell 63, 673-686). Consistent with these results, we showed that Syrian hamster (SHa) PrP is ineligible for efficient conversion to PrPSc in ScN2a cells. By constructing a series of chimeric mouse (Mo)/SHaPrP genes, we developed an epitopically tagged functional variant of the MoPrP gene, which can efficiently form protease-resistant PrP molecules upon expression in ScN2a cells. The presence of a defined epitope for an SHa-specific monoclonal antibody allows the products of this chimeric gene to be discriminated from endogenous MoPrP and creates a useful reagent for exploring structure/function relationships via targeted mutagenesis. In addition, we developed a transgenic mouse expression vector by manipulation of an SHaPrP cosmid clone. This vector permits the efficient expression of foreign PrP genes in the brains of transgenic animals, enabling pathological consequences of in vitro mutagenesis to be studied.  相似文献   

4.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

5.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition.  相似文献   

6.
A nine-octapeptide insertion in the prion protein (PrP) gene is associated with an inherited form of human prion disease. Transgenic (Tg) mice that express the mouse homolog of this mutation (designated PG14) spontaneously accumulate in their brains an insoluble and weakly protease-resistant form of the mutant protein. This form (designated PG14(Spon)) is highly neurotoxic, but is not infectious in animal bioassays. In contrast, when Tg(PG14) mice are inoculated with the Rocky Mountain Laboratory (RML) strain of prions, they accumulate a different form of PG14 PrP (designated PG14(RML)) that is highly protease resistant and infectious in animal transmission experiments. We have been interested in characterizing the molecular properties of PG14(Spon) and PG14(RML), with a view to identifying features that determine two, apparently distinct properties of PrP aggregates: their infectivity and their pathogenicity. In this paper, we have subjected PG14(Spon) and PG14(RML) to a panel of assays commonly used to distinguish infectious PrP (PrP(Sc)) from cellular PrP (PrP(C)), including immobilized metal affinity chromatography, precipitation with sodium phosphotungstate, and immunoprecipitation with PrP(C)- and PrP(Sc)-specific antibodies. Surprisingly, we found that aggregates of PG14(Spon) and PG14(RML) behave identically to each other, and to authentic PrP(Sc), in each of these biochemical assays. PG14(Spon) however, in contrast to PG14(RML) and PrP(Sc), was unable to seed the misfolding of PrP(C) in an in vitro protein misfolding cyclic amplification reaction. Collectively, these results suggest that infectious and non-infectious aggregates of PrP share common structural features accounting for their toxicity, and that self-propagation of PrP involves more subtle molecular differences.  相似文献   

7.
Doppel (Dpl) is a prion (PrP)-like protein due to the structural and biochemical similarities; however, the natural functions of Dpl and PrP remain unclear. In this study, a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes. Furl-length and various truncated human Dpl and PrP proteins were expressed and purified from Escherichia coil Supplement of the full-length Dpl onto human neuroblastoma cell SH-SY5Y induced remarkable cytotoxicity, and the region responsible for its cytotoxicity was mapped at the middle segment of Dpl [amino acids (aa) 81-122]. Interestingly, DpMnduced cytotoxicity was antagonized by the presence of full- length wild-type PrP. Analysis on fragments of PrP mutants showed that the N-terminal fragment (aa 23- 90) of PrP was responsible for the protective activity. A truncated PrP (PrPA32-121) with similar secondary structure as Dpl induced DpMike cytotoxicity on SH- SY5Y cells. Furthermore, binding of copper ion could enhance the antagonizing effect of PrP on Dpi-induced cytotoxicity. Apoptosis assays revealed that cytotoxicity induced by Dpl occurred through an apoptotic mechanism. These results suggested that the function of Dpl is antagonistic to PrP rather than synergistic.  相似文献   

8.
mAbs T1 and T2 were established by immunizing PrP gene ablated mice with recombinant MoPrP of residues 121–231. Both mAbs were cross‐reactive with PrP from hamster, sheep, cattle and deer. A linear epitope of mAb T1 was identified at residues 137–143 of MoPrP and buried in PrPC expressed on the cell surface. mAb T1 showed no inhibitory effect on accumulation of PrPSc in cultured scrapie‐infected neuroblastoma (ScN2a) cells. In contrast, mAb T2 recognized a discontinuous epitope ranged on, or structured by, residues 132–217 and this epitope was exposed on the cell surface PrPC. mAb T2 showed an excellent inhibitory effect on PrPSc accumulation in vitro at a 50% inhibitory concentration of 0.02 μg/ml (0.14 nM). The scFv form of mAb T2 (scFv T2) was secreted in neuroblastoma (N2a58) cell cultures by transfection through eukaryotic secretion vector. Coculturing of ScN2a cells with scFv T2‐producing N2a58 cells induced a clear inhibitory effect on PrPSc accumulation, suggesting that scFv T2 could potentially be an immunotherapeutic tool for prion diseases by inhibition of PrPSc accumulation.  相似文献   

9.
Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1+/+), hemizygous (Pin1+/?) or knock-out (Pin1?/?) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.  相似文献   

10.
Recent studies have revealed that accumulation of prion protein (PrP) in the cytoplasm results in the production of aggregates that are insoluble in non-ionic detergents and partially resistant to proteinase K. Transgenic mice expressing PrP in the cytoplasm develop severe ataxia with cerebellar degeneration and gliosis, suggesting that cytoplasmic PrP may play a role in the pathogenesis of prion diseases. The mechanism of cytoplasmic PrP neurotoxicity is not known. In this report, we determined the molecular morphology of cytoplasmic PrP aggregates by immunofluorescence and electron microscopy, in neuronal and non-neuronal cells. Transient expression of cytoplasmic PrP produced juxtanuclear aggregates reminiscent of aggresomes in human embryonic kidney 293 cells, human neuroblastoma BE2-M17 cells and mouse neuroblastoma N2a cells. Time course studies revealed that discrete aggregates form first throughout the cytoplasm, and then coalesce to form an aggresome. Aggresomes containing cytoplasmic PrP were 1-5-microm inclusion bodies and were filled with electron-dense particles. Cytoplasmic PrP aggregates induced mitochondrial clustering, reorganization of intermediate filaments, prevented the secretion of wild-type PrP molecules and diverted these molecules to the cytoplasm. Cytoplasmic PrP decreased the viability of neuronal and non-neuronal cells. We conclude that any event leading to accumulation of PrP in the cytoplasm is likely to result in cell death.  相似文献   

11.
Strong support for a primary causative role of the Abeta peptides in the development of Alzheimer's disease (AD) neurodegeneration derives from reports that presenilin familial AD (FAD) mutants alter amyloid precursor protein processing, thus increasing production of neurotoxic Abeta 1-42 (Abeta 42). This effect of FAD mutants is also reflected in an increased ratio of peptides Abeta 42 over Abeta 1-40 (Abeta 40). In the present study, we show that several presenilin 1 FAD mutants failed to increase production of Abeta 42 or the Abeta 42/40 ratio. Our data suggest that the mechanism by which FAD mutations promote neurodegeneration and AD may be independent of their effects on Abeta production.  相似文献   

12.
Studies in transgenic mice revealed that neurodegeneration induced by scrapie prion (PrP(Sc)) propagation is dependent on neuronal expression of the cellular prion protein PrP(C). On the other hand, there is evidence that PrP(C) itself has a stress-protective activity. Here, we show that the toxic activity of PrP(Sc) and the protective activity of PrP(C) are interconnected. With a novel co-cultivation assay, we demonstrate that PrP(Sc) can induce apoptotic signalling in PrP(C)-expressing cells. However, cells expressing PrP mutants with an impaired stress-protective activity were resistant to PrP(Sc)-induced toxicity. We also show that the internal hydrophobic domain promotes dimer formation of PrP and that dimerization of PrP is linked to its stress-protective activity. PrP mutants defective in dimer formation did not confer enhanced stress tolerance. Moreover, in chronically scrapie-infected neuroblastoma cells the amount of PrP(C) dimers inversely correlated with the amount of PrP(Sc) and the resistance of the cells to various stress conditions. Our results provide new insight into the mechanism of PrP(C)-mediated neuroprotection and indicate that pathological PrP conformers abuse PrP(C)-dependent pathways for apoptotic signalling.  相似文献   

13.
Danielle Beckman 《朊病毒》2016,10(2):131-142
The physiological properties of the native, endogenous prion protein (PrPC) is a matter of concern, due to its pleiotropic functions and links to neurodegenerative disorders and cancer. In line with our hypothesis that the basic function of PrPC is to serve as a cell surface scaffold for the assembly of signaling modules, multiple interactions have been identified of PrPC with signaling molecules, including neurotransmitter receptors. We recently reported evidence that PrPC may modulate monoaminergic neurotransmission, as well as depressive-like behavior in mice. Here, we discuss how those results, together with a number of other studies, including our previous demonstration that both inflammatory and behavioral stress modulate PrPC content in neutrophils, suggest a distributed role of PrPC in clinical depression and inflammation associated with neurodegenerative diseases. An overarching understanding of the multiple interventions of PrPC upon physiological events may both shed light on the pathogenesis of, as well as help the identification of novel therapeutic targets for clinical depression, Prion and Alzheimer's Diseases.  相似文献   

14.
The eight amino acid sequence, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys, representing the FLAG peptide, was inserted after codons 22 or 88 of the mouse (Mo) prion protein (PrP) gene. Inclusion of the FLAG sequence at these locations interfered neither with the cellular processing of PrPC nor its conversion into PrPSc. Inclusion of the FLAG epitope at residue 22 but not at residue 88 facilitated immunodetection of tagged PrP by anti-FLAG monoclonal antibodies (mAbs). Inoculation of transgenic (Tg) mice expressing N-terminally tagged MoPrP with Mo prions resulted in abbreviated incubation times, indicating that the FLAG sequence was not deleterious to prion propagation. Immunopurification of FLAG-tagged MoPrPC in the brains of Tg mice was achieved using the calcium-dependent anti-FLAG M1 mAb and non-denaturing procedures. Although the function of PrPC remains unknown, our studies demonstrate that some modifications of PrPC do not inhibit the one biological activity that can be measured, i.e., conversion into PrPSc. Tagged PrP molecules may prove useful in the development of improved assays for prions as well as structural studies of the PrP isoforms.  相似文献   

15.
The infectious agent of transmissible spongiform encephalopathies (TSE) has been considered to be PrP(SC), a structural isoform of cellular prion protein PrP(C). PrP(SC) can exist as oligomers and/or as amyloid polymers. Nucleic acids induce structural conversion of recombinant prion protein PrP and PrP(C) to PrP(SC) form in solution and in vitro. Here, we report that nucleic acids, by interacting with PrP in solution, produce amyloid fibril and fibres of different morphologies, similar to those identified in the diseased brains. In addition, the same interaction produces polymer lattices and spherical amyloids of different dimensions (15-150 nm in diameters). The polymer lattices show apparent morphological similarity to the two-dimensional amyloid crystals obtained from linear amyloids isolated in vivo. The spherical amyloids structurally resemble "spherical particles" observed in natural spongiform encephalopathy (SE) and in scrapie-infected brains (TSE). We suggest that spherical amyloids, PrP(SC)-amylospheroids, are probable constituents of the coat of the spherical particles found in vivo and the latter can act as protective coats of the SE and TSE agents in vivo.  相似文献   

16.
Zhang L  Caplan MJ 《生理学报》2007,59(4):505-511
上皮组织细胞必须极化其表面区域以执行其转运生理功能。不同膜转运蛋白定位于细胞膜的不同区域,而细胞与细胞之间则须通过紧密连接复合体紧密连接成极化区域,并调节旁细胞途径的通透性。精密的机体要求上皮细胞具备一个筛选装置,用于将新合成的转运蛋白定位于合适的表面区域;转运蛋白本身也必须内含规定其功能位置的分选信号。目前上皮细胞蛋白分选和蛋白质之间相互作用已被逐渐阐明。上皮细胞通过细胞信号转导途径形成极化初始状态,将自己定位于特定位置,调节细胞与细胞之间、细胞与基质之问的相互作用。最近研究发现其信号转导通路的一个成员是一种AMP激活的蛋白激酶(AMP-stimulated protein kinase.AMPK),它也是细胞能量感受器。  相似文献   

17.
Lithium is used for several decades to treat manic-depressive illness (bipolar affective disorder). Recently, it was found that lithium induces autophagy, thereby promoting the clearance of mutant huntingtin and α-synucleins in experimental systems. We show here for the first time that lithium significantly reduces the amount of pathological prion protein (PrPSc) in prion-infected neuronal and non-neuronal cultured cells by inducing autophagy. Treatment of prion-infected cells with 3-methyladenine, a potent inhibitor of autophagy, counteracted the anti-prion effect of lithium, demonstrating that induction of autophagy mediates degradation of PrPSc. Co-treatment with lithium and rapamycin, a drug widely used to induce autophagy, had an additive effect on PrPSc clearance compared to treatment with either drug alone. In addition, we provide evidence that the ability to reduce PrPSc and to induce autophagy is common for diverse lithium compounds, not only for the drug lithium chloride, usually administered in clinical therapy. Furthermore, we show here that besides reduction of PrPSc-aggregates, lithium-induced autophagy also slightly reduces the levels of cellular prion protein. Limiting the substrate available for conversion of cellular prion protein into PrPSc may provide an additional mechanism for reduction of PrPSc by lithium-induced autophagy.  相似文献   

18.
The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.  相似文献   

19.
Jiri G. Safar 《朊病毒》2012,6(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

20.
《朊病毒》2013,7(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号