首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The plant growth retardant paclobutrazol, (PP333) (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol, inhibits specifically the three steps in the oxidation of the gibberellin-precursorent-kaurene toent-kaurenoic acid in a cell-free system fromCucurbita maxima endosperm. The KI50 for this inhibition is 2×10?8 M. The KI50 values for the separated2S, 3S, and2R, 3R enantiomers of paclobutrazol in this system are 2×10?8 M and 7×10?7 M, respectively. A cell-free preparation from immatureMalus pumila embryos convertsent-kaurene to gibberellin A9, whereas no conversion occurs in a similar preparation fromMalus endosperm. The conversion ofent-kaurene by the embryo preparation is inhibited by paclobutrazol with KI50 values for the2S,3S and2R,3R enantiomers of 2×10?8 M and 6×10?8 M, respectively.  相似文献   

2.
Cytokinins, which have some structural similarities to ancymidol, a plant growth retardant, were tested for their effects on the cell-free oxidation ofent-kaurene. Results indicate that several cytokinins inhibit this reaction in microsomal extracts of liquid endosperm from immature wild cucumber seeds. N6-cyclohexanemethyladenine was the most active (inhibiting 50% of the controlent-kaurene oxidation at 2×10–6 M). N6-isoamyladenine, N6-benzyladenine, N6-(2-isopentenyl)adenine and dihydrozeatin were active at successively higher concentrations. Zeatin, kinetin, adenine, N6-benzyladenosine, and N6-(isopentenyl)adenosine were inactive in this system.The basis for the inhibition ofent-kaurene oxidation by cytokinins may be similar to that of ancymidol: interaction with cytochrome P-450. A binding spectrum similar to that of ancymidol with cytochrome P-450 from wild cucumber endosperm microsomes was obtained with four active cytokinins. The cytokinin binding properties of this protein are currently under investigation.No metabolism of N6-benzyladenine could be detected under conditions in which the cytokinin inhibited the oxidation ofent-kaurene toent-kaurenol.This work was supported in part by National Science Foundation Grant PCM 7619279 and PCM 8016237, and a grant from Eli Lilly and Company.A portion of this work was presented as a poster paper at the Tenth International Conference on Plant Growth Substances, Madison, Wisconsin, USA, July 22–26, 1979.  相似文献   

3.
A photolabile azido derivative of the kaurene oxidase inhibitor 1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl) pentan-3-ol (paclobutrazol) has been synthesized for use as a photoaffinity labeling agent. The compound was tested as an inhibitor of the oxidation of ent-kaurene catalyzed by cell-free preparations from endosperm of Cucurbita maxima. The I50 of the azido derivative was 9.5 nanomolar, which compares well with that of paclobutrazol (6.3 nanomolar in our measurements). The azido compound bound to Cytochrome P-450 in microsomes from Cucurbita maxima, and induced a Type II spectral change, with an apparent binding constant of 0.24±0.04 micromolar.  相似文献   

4.
The fungicide triarimol was tested for its effect on abscisic acid (ABA) accumulation in growing culturesof Cercospora rosicola. ABA accumulation was reduced by approximately 50% with 10–8 M triarimol. Growth ofC. rosicola, as measured by dry weight accumulation, was inhibited by triarimol concentrations at or greater than 10–7 M. These results are compared with those obtained with clomazone, ancymidol, and paclobutrazol, which inhibit ABA accumulation by 50% at concentrations of 5 × 10–5, 5 × 10–6, and 5 × 10–7 M, respectively. Triarimol, therefore, is among the most potent inhibitors of ABA biosynthesis reported to date. Feeding studies with [14C]mevalonic acid confirmed the inhibition of ABA biosynthesis by 5 × 10–8 M triarimol. These results support previous suggestions that one or more of the steps in the ABA biosynthetic pathway from mevalonic acid is catalyzed by cytochrome P-450. Feeding studies with 1-deoxy-[2H]-ABA in resuspended cultures ofC. rosicola show that the conversion of this substrate is not inhibited by triarimol.  相似文献   

5.
Microsomal and soluble cell-free extracts prepared from liquid endosperm of Cucurbita maxima L. were found to contain high concentrations of endogenous ent-kaurene and ent-kaurenol by gas chromatography-mass spectrometry-chemical ionization with deuterated internal standards. Increases in the levels of ent-kaurenol, ent-kaurenoic acid, and ent-7-hydroxykaurenoic acid are correlated with a decline in the amount of endogenous ent-kaurene following a 10 min incubation of microsomes with NADPH and FAD. The rate of oxidation of radiolabeled ent-kaurene by the microsomal fraction was determined, and the need to account for endogenous substrate is shown. Endogenous ent-kaurene present in soluble extracts had the effect of diluting the [14C]ent-kaurene synthesized from [14C]mevalonic acid, resulting in reduced specific radioactivity of the product. The dilution of [14C]ent-kaurene was more pronounced in extracts with higher endogenous ent-kaurene levels or when the reactions were run in the presence of O2 and NADPH. Evidence is presented that suggests differential metabolism of endogenous ent-kaurene and radiolabeled ent-kaurene in both microsomal and soluble extracts.Abbreviations Kaurene ent-kaur-16-ene - MVA mevalonic acid - kaurenol ent-kaur-16-en-19-ol - kaurenoic acid ent-kaur-16-en-19-oic acid - EtOAc ethyl acetate - MeOH methanol - GC-MS-CI gas chromatography-mass spectrometry-chemical ionization - 13-OH KA ent-13-hydroxykaur-16-en-19-oic acid - 7-OH kaurenoic acid ent-7-hydroxykaur-16-en-19-oic acid - kaurenal ent-kaur-16-en-19-al - Me(x) methyl ester of x - TMS(x) trimethylsilyl ether or ester of x - GA(x) gibberellin A(x)  相似文献   

6.
Cytokinins, which have some structural similarities to ancymidol, a plant growth retardant, were tested for their effects on the cell-free oxidation ofent-kaurene. Results indicate that several cytokinins inhibit this reaction in microsomal extracts of liquid endosperm from immature wild cucumber seeds. N6-cyclohexanemethyladenine was the most active (inhibiting 50% of the controlent-kaurene oxidation at 2×10?6 M). N6-isoamyladenine, N6-benzyladenine, N6-(Δ2-isopentenyl)adenine and dihydrozeatin were active at successively higher concentrations. Zeatin, kinetin, adenine, N6-benzyladenosine, and N6-(isopentenyl)adenosine were inactive in this system. The basis for the inhibition ofent-kaurene oxidation by cytokinins may be similar to that of ancymidol: interaction with cytochrome P-450. A binding spectrum similar to that of ancymidol with cytochrome P-450 from wild cucumber endosperm microsomes was obtained with four active cytokinins. The cytokinin binding properties of this protein are currently under investigation. No metabolism of N6-benzyladenine could be detected under conditions in which the cytokinin inhibited the oxidation ofent-kaurene toent-kaurenol.  相似文献   

7.
A cell-free system capable of converting [14C]geranylgeranyl diphosphate to ent-[14C]kaurene and to an unidentified acid-hydrolysable compound was obtained from the basal portions of 5-d-old shoots of wheat seedlings (Triticum aestivum L.). By means of marker enzyme activities, the synthesis of ent-kaurene and the unknown compound could be quantitatively assigned to a plastid fraction obtained by Percoll-gradient centrifugation of the homogenate. The enzyme activities were located within the plastids, probably in the stroma, because they withstood trypsin treatment of the intact plastids, and the plastids had to be broken to release the activity, which was then obtained in soluble form. Plastid membranes had no activity. Plastid stroma preparations obtained from pea (Pisum sativum L.) shoot tips and pumpkin (Cucurbita maxima L.) endosperm also yielded ent-kaurene synthetase activity, but did not form the unknown compound. The exact nature of the active plastids was not ascertained, but the use of methods for proplastid isolation was essential for full activity, and the active tissues are all known to contain high proportions of proplastids, developing chloroplasts or leucoplasts. We therefore believe that ent-kaurene synthesis may be limited to these categories. Mature chloroplasts from the wheat leaves did not contain ent-kaurene synthetase activity and did not yield the unknown component. Incorporation of [14C]geranylgeranyl diphosphate into ent-[14C]kaurene and the unknown component was assayed by high-performance liquid chromatography with on-line radiocounting. ent-[14C]Kaurene was identified by Kovats retention index and full mass spectra obtained by combined gas chromatography-mass spectrometry. The unknown component was first believed to be copalyl diphosphate, because it yielded a compound on acid hydrolysis, which migrated like copalol on high-performance liquid chromatography and gave a mass spectrum very similar to that of authentic copalol. However, differences in the mass spectrum and in retention time on capillary gas chromatography excluded identity with copalol. Furthermore, the unhydrolysed compound was not converted to ent-kaurene by a cell-free system from C. maxima endosperm as copalyl diphosphate would have been.Abbreviations ADH alcohol dehydrogenase - AMO 1618 2isopropyl-4-(trimethylammoniumchloride)-5-methylphenyl piperi-dine-1-carboxylate - BSA bovine serum albumin - DTT dithioth-reitol - GAn gibberellin An - GAPDH NADP+-glyceraldehyde 3-phosphate dehydrogenase - GC-MS combined gas chromatography-mass spectrometry - GGPP all trans-isomer of geranyl-geranyl diphosphate - KS ent-kaurene synthetase - MDH malate dehydrogenase - MAA mevalonate activating activity - SOR shikimate oxidoreductase We thank Mrs. Gudrun Bodtke and Mrs. Dorothee Dasbach for able technical assistance, Prof. L.N. Mander (Australian National University, Canberra, Australia) for ent-[2H2]kaurene and Dr. Yuji Kamiya (RIKEN, Saitama, Japan) for geranylgeraniol and copalol. The work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

8.
Germinating pea (Pisum sativum L.) seeds of two dwarf cultivars, Progress No. 9 and Green Arrow, and two tall cultivars, Alaska and Alderman, were treated with low temperature (3–5°C) for 14 days and then transferred to normal growing conditions (19–21°C for 16 h/14.5–16.5°C for 8 h) for an additional 10 days. Biosynthesis of [14C]ent-kaurene from [14C]2-mevalonic acid (2-MVA) was assayed in cell-free enzyme extracts prepared from shoot tips 10 days after cold treatment and was compared with activity in enzyme extracts prepared from noncold-treated, 10-day-old control plants. Shoot lengths of cold-treated plants were measured throughout a 35-day period and compared with shoot lengths of plants grown without cold treatment for 25–35 days. Low temperature induced a five-to 10-fold enhancement ofent-kaurene, hence potentially gibberellin (GA), biosynthesis in seedlings of the two dwarf cultivars but not in the tall cultivars. However, the lack of an increase in growth rate in the cold-treated dwarfs indicated that endogenous GA biosynthesis remained blocked at some point beyondent-kaurene in the biosynthetic pathway. Since the late-flowering Alderman cultivar did not exhibit enhanced biosynthesis ofent-kaurene, it appears that if vernalization in late-flowering cultivars of peas is correlated with enhanced GA biosynthesis, it is not the early part of the biosynthetic pathway which is affected.  相似文献   

9.
Net synthesis of [14C]ent-kaurene from [14C]2-mevalonic acid was assayed in cell-free enzyme extracts prepared from Alaska pea (Pisum sativum L.) seedlings throughout 44 h of a regimen consisting of a 16-h day and an 8-h night. Activities generally followed an upward trend during the dark period and a downward trend during the photoperiod. Activity was also assayed in enzyme extracts prepared at intervals during a 12-h photoperiod and a following, continuous 36-h dark period after entrainment of plants to a regimen of 12-h days and 12-h nights.Ent-kaurene synthesis activity again followed an upward trend in enzyme extracts prepared during what would have been the entrainment dark period, and a downward trend during the entrainment photoperiod. The apparent endogenous rhythm ofent-kaurene biosynthesis may have implications for the regulation of gibberellin biosynthesis.  相似文献   

10.
The nonallelicgib-1 andgib-3 tomato (Lycopersion esculentum Mill.) mutants are gibberellin deficient and exhibit a dwarfed growth habit. Previous work has shown that this dwarfed growth pattern can be reversed by the application of a number of gibberellins and their precursors, includingent-kaurene (ent-kaur-16-ene). This indicates that they are blocked in gibberellin biosynthesis at a step prior toent-kaurene metabolism. The normal accumulation of carotenoids observed in these mutants suggests a functionally normal isoprenoid pathway.Ent-kaurene is synthesized from geranylgeranyl pyrophosphate in a two-step process with copalyl pyrophosphate as an intermediate.In vitro assays using young fruit extracts from wild-type andgib-2 plants resulted in the conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and the conversion of copalyl pyrophosphate toentkaurene. Similar assays usinggib-1 plants indicated a reduced ability for synthesis of copalyl pyrophosphate from geranylgeranyl pyrophosphate, and thus a reducedent-kaurene synthetase A activity. Furthermore,gib-3 extracts demonstrated a reduced ability to synthesizeent-kaurene from copalyl pyrophosphate, and thus a reducedent-kaurene synthetase B activity. These results establish the enzymatic conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and copalyl pyrophosphate toent-kaurene, as the sites of the mutations ingib-1 andgib-3 tomatoes, respectively. We also note that tomato fruit extracts contain components which are inhibitory toent-kaurene synthesis.  相似文献   

11.
Biosynthesis of gibberellins (GAs) was studied in vivo in endosperms of Sechium edule Sw. Exogenous ent-[14C]kaurene was metabolized into four major products: GA12, GA4, GA7 and 16, 17-dihydro-16-hydroxy-GA15 alcohol glucoside. Other minor metabolites were also observed including ent-kaurenol and ent-kaurenal. Conversion of ent-[14C]kaurene to ent-kaurenol glucoside by endosperm cell-free preparations in the presence of UDPG was observed. However, the finding was not confirmed in in vivo studies and is probably artifactual. Overall evidence coming from the analysis of endogenous GAs and in vitro and in vivo biosynthetic studies are discussed in relation to the possible existence in the Sechium seeds of a different route, along with the known pathway, branching from ent-kaurene or ent-7-α-hydroxykaurenoic acid and this also leading to biologically active GAs.  相似文献   

12.
A new product obtained by incubation of [2-14C ]-mevalonic acid with a cell-free system from Cucurbita maxima endosperm was identified by GC-MS as ent-kaura-6,16-dien-19-oic acid. When this compound was reincubated with the microsomal fraction it was converted to 7β-hydroxykaurenolide and hence to 7β,12α-dihydroxykaurenolide. The dienoic acid was also obtained by incubation of ent-kaurene, ent1-kaurenol, ent-kaurenal and ent-kaurenoic acid, but not ent-7α-hydroxykaurenoic acid, with the microsomal fraction. Thus, in the C. maxima cell-free system, the kaurenolides are formed by a pathway which branches from the GA pathway at ent-kaurenoic acid and proceeds via the dienoic acid.  相似文献   

13.
14.
Summary Median volumes ofin vitro coelomocyte populations fromGlycera dibranchiata rapidly change in response to external differences of osmotic pressure (Fig. 3). Fifty per cent haemolysis occurred in just under 30% sea water, 285 mOSm·kg–1. Hydraulic conductivities (Lp=0.92 to 2.78×107 cm×s–1·atm–1) calculated from rates of osmotic swelling were similar to values for sea urchin eggs and squid axons. Coelomocytes show a slower partial return to their original volumes in hypotonic but not hypertonic media. This asymmetry is reflected in Ponder's R values of 0.787 and 0.987, respectively, determined after this regulatory phase is complete (Figs. 4 and 5). Evidence for an irreversible stress dependent leakage of osmotically active solutes when the coelomocytes are removed from the animal and diluted with sea water is presented.  相似文献   

15.
Young shoots of normal maize (Zea mays L.) were used to determine both the stepwise metabolism of ent-kaurene to gibberellin A12-aldehyde and the endogenous presence of the members in this series. Each of the five steps in the sequence was established by feeds of 17-13C, 3H-labeled kauranoids to cubes from the cortex of elongating internodes, to homogenates from the cortex of elongating internodes, and/or to homogenates from dark-grown seedlings. The 13C-metabolites were identified by Kovats retention indices (KRI) and full-scan capillary gas chromatography-mass spectrometry (GC-MS). Five substrates and the final product in this sequence were shown to be native by the isotopic dilution of 17-13C, 3H-labeled substrates added as internal standards to extracts obtained from elongating internodes. Evidence for the isotopic dilution was obtained by KRI and full-scan capillary GC-MS. Thus, we document the presence in young maize shoots of the metabolic steps, ent-kaurene → ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-7 α-hydroxykaurenoic acid → gibberellin A12-aldehyde.  相似文献   

16.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

17.
Investigations on the sites of ent-kaur-16-ene (ent-kaurene) biosynthesis were conducted with cell-free extracts from several excised parts of 10-, 13-, and 16-d-old tall and dwarf pea (Pisum sativum L.) seedlings. [14C]Mevalonic acid was incorporated into ent-kaurene in cell-free extracts from young developing leaves and elongating internodes of tall (`Alaska') and dwarf (`Progress No.9') pea seedlings at all three stages of development. ent-Kaurene biosynthesis also occurred readily in cell-free extracts from shoot tips, petioles, and stipules near the young elongating internodes. The ent-kaurene-synthesizing activity found in young developing tissues declined as tissues matured. Little or no activity was detectable in enzyme extracts from cotyledons and root tips at different stages. In light grown tall pea internodes ent-kaurene-synthesizing activity was low as they began to elongate, reached a maximum when the internodes reached about 2 cm in length and declined as they matured. Activity in extracts of dwarf shoot tips and internodes was generally lower than in equivalent tall plants, but the activity in dwarf leaves and stipules was somewhat higher than in tall plants. With the exception of root tips, there is a strong correlation between growth potential of a tissue and the rate of ent-kaurene biosynthesis in extracts from that tissue.  相似文献   

18.
A cell-free system from immature pea seeds converts 14C-labelled ent-kaurene to ent-kaurenol, ent-kaurenal, ent-kaurenoic acid, ent-7α-hydroxykaurenoic acid, and gibberellin A12-aldehyde. The latter becomes converted further to 13-hydroxygibberellin A12, gibberellin A44, gibberellin A12-alcohol, and several unidentified products. Thus the biosynthesis of gibberellins via ent-kaurene is now established for a member of the Leguminosae. It is the first time that 13-hydroxylation of gibberellins has been observed in a cell-free system and that gibberellin A12-alcohol has been obtained in any biological system.  相似文献   

19.
Gibberellins are ent-kaurene derived phytohormones that are involved in seed germination, stem elongation, and flower induction in seed plants, as well as in antheridia formation and spore germination in ferns. Although ubiquitous in vascular plants, the occurrence and potential function(s) of gibberellins in bryophytes have not yet been resolved. To determine the potential role of gibberellin and/or gibberellin-like compounds in mosses, the effect of AMO-1618 on spores of Physcomitrella patens (Hedw.) B.S.G. was tested. AMO-1618, which inhibited ent-kaurene and gibberellin biosynthesis in angiosperms, also inhibited the bifunctional copalyl diphosphate synthase (E.C. 5.5.1.13)/ent-kaurene synthase (E.C. 4.2.3.19) of P. patens. AMO-1618 also caused a decrease in spore germination rates of P. patens, and this inhibitory effect was less pronounced in the presence of ent-kaurene. These results suggest that ent-kaurene biosynthesis is required by P. patens spores to germinate, implying the presence of gibberellin-like phytohormones in mosses.  相似文献   

20.
Barley grains contain hydrocarbons, including a material indistinguishable from ent-kaurene by GLC, and which after appropriate chemical conversions contain material behaving like ent-kauran-16,17-diol, ent-kaurene norketone and ent-17-nor-kaurane on TLC and GLC. The presence of ent-kaurene was confirmed by conversion to ent-kauran-16-ol and, following formation of acetate-[3H], recrystallization to constant specific activity with unlabelled carrier. In the initial ca. 15 hr of germination, preceding the rise in endogenous gibberellins, the level of ent-kaurene falls. Exogenous ent-kaurene-[14C] was not metabolized by intact barley grains. ent-Kauran-16,17-epoxide was formed non-enzymically by boiled extracts. Unboiled homogenates also formed ent-kauran-17-ol and ent-kauran-16,17-diol. The diol appeared to be formed from the epoxide, but the ent-kauran-17-ol was not. No recognized gibberellin precursors were detected. Nevertheless, endogenous ent-kaurene may be the stored biosynthetic precursor of gibberellins in germinating barley grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号