首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallothioneins are small, ubiquitous Cys-rich proteins known to be involved in reactive oxygen species (ROS) scavenging and metal homeostasis. We found that the expression of a metallothionein gene (OsMT2b) was synergically down-regulated by OsRac1 and rice (Oryza sativa) blast-derived elicitors. Transgenic plants overexpressing OsMT2b showed increased susceptibility to bacterial blight and blast fungus. OsMT2b-overexpressing cells showed reduced elicitor-induced hydrogen peroxide production. In contrast, homozygous OsMT2b::Tos17-inserted mutant and OsMT2b-RNAi-silenced transgenic cells showed significantly higher elicitor-induced hydrogen peroxide production than the wild-type cells. In vitro assay showed that recombinant OsMT2b protein possessed superoxide- and hydroxyl radical-scavenging activities. Taken together, these results showed that OsMT2b is an ROS scavenger and its expression is down-regulated by OsRac1, thus potentiating ROS, which function as signals in resistance response. The results suggest that OsRac1 plays a dual role as an inducer of ROS production and a suppressor of ROS scavenging.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are negative regulators of MAPKs. In dicotyledons such as Arabidopsis and tobacco, MKPs have been shown to play pivotal roles in abiotic stress responses, hormone responses and microtubule organization. However, little is known about the role of MKPs in monocotyledons such as rice. Database searches identified five putative MKPs in rice. We investigated their expression in response to wounding, and found that the expression of OsMKP1 is rapidly induced by wounding. In this study, we functionally characterized the involvement of OsMKP1 in wound responses. The deduced amino acid sequence of OsMKP1 shows strong similarity to Arabidopsis AtMKP1 and tobacco NtMKP1. Moreover, OsMKP1 bound calmodulin in a manner similar to NtMKP1. To determine the biological function of OsMKP1, we obtained osmkp1, a loss-of-function mutant, in which retrotransposon Tos17 was inserted in the second exon of OsMKP1. Unlike the Arabidopsis atmkp1 loss-of-function mutant, which shows no abnormal phenotype without stimuli, osmkp1 showed a semi-dwarf phenotype. Exogenous supply of neither gibberellin nor brassinosteroid complemented the semi-dwarf phenotype of osmkp1. Activities of two stress-responsive MAPKs, OsMPK3 and OsMPK6, in osmkp1 were higher than those in the wild type both before and after wounding. Microarray analysis identified 13 up-regulated and eight down-regulated genes in osmkp1. Among the up-regulated genes, the expression of five genes showed clear responses to wounding, indicating that wound responses are constitutively activated in osmkp1. These results suggest that OsMKP1 is involved in the negative regulation of rice wound responses.  相似文献   

3.
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms.  相似文献   

4.
5.
Hou Y  Ye RD  Browning DD 《Cellular signalling》2004,16(9):1061-1069
Cyclic-GMP-dependent protein kinase (PKG) is widely appreciated as having diverse roles in a variety of cell types. Many reports have indicated that PKG might regulate cell function by activating members of the mitogen-activated protein kinase (MAPK) family of signaling proteins. In this study, stimulation of HEK-293 cells with nitric oxide (NO) was found to induce a rapid accumulation of phosphorylated p38 MAPK. The involvement of PKG in this process was confirmed by cotransfection of a dominant negative PKG construct (G1alphaR-GFP), which was able to block cGMP-induced p38 MAPK activation. Transfection of cells to express dominant negative Rac1(T17N) was also able to dose-dependently block cGMP-stimulated activation of p38 MAPK, thus indicating the importance of this pathway downstream of PKG. GST-PDB affinity-precipitation experiments revealed that stimulation of HEK293 cells with either nitric oxide or 8-Br-cGMP resulted in a rapid and transient activation of Rac1 with similar kinetics to p38 MAPK phosphorylation. Moreover, using in vitro kinase assays it was found that cGMP also stimulated the activity of the Rac1 effector Pak1. The activation of both Rac1 and Pak1 by 8-Br-cGMP was completely abolished by transfection of the cells with G1alphaR-GFP. Expression of the Rac1(T17N) mutant inhibited PKG-dependent activation of PAK1 indicating that Rac1 functions upstream of PAK1 in this pathway. Immunofluorescence experiments demonstrated clear colocalization of PKG and Rac1 in membrane ruffles and dynamic membrane regions supporting a functional interaction. However, in vitro kinase assays demonstrated that Rac1 is not a substrate for PKG suggesting an indirect activation mechanism. Taken together these data demonstrate a novel PKG-dependent pathway by which the Rac1/Pak1 pathway is activated. Furthermore, we demonstrate that this pathway is central to the activation of p38 MAPK by PKG in these cells.  相似文献   

6.
7.
Regulated mRNA decay is a highly important process for the tight control of gene expression. Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions that direct rapid mRNA decay by interaction with decay-promoting ARE-binding proteins (ARE-BPs). The decay of ARE-containing mRNAs is regulated by signaling pathways that are believed to directly target ARE-BPs. Here, we show that BRF1 involved in ARE-mediated mRNA decay (AMD) is phosphorylated by MAPK-activated protein kinase 2 (MK2). In vitro kinase assays using different BRF1 fragments suggest that MK2 phosphorylates BRF1 at four distinct sites, S54, S92, S203, and an unidentified site at the C terminus. Coexpression of an active form of MK2 inhibits ARE mRNA decay activity of BRF1. MK2-mediated inhibition of BRF1 requires phosphorylation at S54, S92, and S203. Phosphorylation of BRF1 by MK2 does not appear to alter its ability to interact with AREs or to associate with mRNA decay enzymes. Thus, MK2 inhibits BRF1-dependent AMD through direct phosphorylation. Although the mechanism underlying this inhibition is still unclear, it appears to target BRF1-dependent AMD at a level downstream from RNA binding and the recruitment of mRNA decay enzymes.  相似文献   

8.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

9.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

10.
T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation.  相似文献   

11.
12.
13.
Salt stress inhibits plant growth and development and plants activate kinase-dependent survival pathways in response to salt stress. However, the role of soybean mitogenactivated protein kinases (MAPKs) in salt stress response has yet to be characterized. In this study, we found that salt stress activates Glycine max MAP kinase 1 (GMK1), a soybean MAPK. The activity of GMK1 induced with increasing salt concentrations, up to 300 mM NaCl, after 5 min of the treatment and was regulated by post-translational modification. We found that mastoparan, a heteromeric G-protein activator, also activated GMK1, and that n-butanol, a phospholipase D inhibitor, and neomycin, a phospholipase C inhibitor, inhibited its activity. Moreover, GMK1 activity was reduced by suramin, a heteromeric G-protein inhibitor, and by two inhibitors of phosphatidic acid (PA) generation after 5 min of 300 mM NaCl treatment. Endogenous PA levels were highest 5 min after induction of salt stress, and exogenous PA directly activated GMK1. From these data, we propose that salt stress signaling is transduced from heteromeric G-protein to GMK1 via phospholipases in the early stages of the response to salt stress in soybean.  相似文献   

14.
15.
Resistance to chemotherapeutic drugs often limits their clinical efficacy. Previous studies have implicated the bioactive sphingolipid sphingosine-1-phosphate (S-1-P) in regulating sensitivity to cisplatin [cis-diamminedichloroplatinum(II)] and showed that modulating the S-1-P lyase can alter cisplatin sensitivity. Here, we show that the members of the sphingosine kinase (SphK1 and SphK2) and dihydroceramide synthase (LASS1/CerS1, LASS4/CerS4, and LASS5/CerS5) enzyme families each have a unique role in regulating sensitivity to cisplatin and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and vincristine, whereas expression of SphK2 increases sensitivity. Expression of LASS1/CerS1 increases the sensitivity to all the drugs tested, whereas LASS5/CerS5 only increases sensitivity to doxorubicin and vincristine. LASS4/CerS4 expression has no effect on the sensitivity to any drug tested. Reflecting this, we show that the activation of the p38 mitogen-activated protein (MAP) kinase is increased only by LASS1/CerS1, and not by LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to cause a specific translocation of LASS1/CerS1, but not LASS4/CerS4 or LASS5/CerS5, from the endoplasmic reticulum (ER) to the Golgi apparatus. Supporting the hypothesis that this translocation is mechanistically involved in the response to cisplatin, we showed that expression of SphK1, but not SphK2, abrogates both the increased cisplatin sensitivity in cells stably expressing LASS1/CerS and the translocation of the LASS1/CerS1. The data suggest that the enzymes of the sphingolipid metabolic pathway can be manipulated to improve sensitivity to the widely used drug cisplatin.  相似文献   

16.
The p38 mitogen-activated protein kinases (MAPK) play a crucial role in stress and inflammatory responses and are also involved in activation of the human immunodeficiency virus gene expression. We have isolated the murine cDNA clones encoding p38-delta MAPK, and we have localized the p38-delta gene to mouse chromosome 17A3-B and human chromosome 6p21.3. By using Northern and in situ hybridization, we have examined the expression of p38-delta in the mouse adult tissues and embryos. p38-delta was expressed primarily in the lung, testis, kidney, and gut epithelium in the adult tissues. Although p38-delta was expressed predominantly in the developing gut and the septum transversum in the mouse embryo at 9.5 days, its expression began to be expanded to many specific tissues in the 12.5-day embryo. At 15.5 days, p38-delta was expressed virtually in most developing epithelia in embryos, suggesting that p38-delta is a developmentally regulated MAPK. Interestingly, p38-delta and p38-alpha were similar serine/threonine kinases but differed in substrate specificity. Overall, p38-delta resembles p38-gamma, whereas p38-beta resembles p38-alpha. Moreover, p38-delta is activated by environmental stress, extracellular stimulants, and MAPK kinase-3, -4, -6, and -7, suggesting that p38-delta is a unique stress-responsive protein kinase.  相似文献   

17.
TAK1, a member of the mitogen-activated kinase kinase kinase family, is activated in vivo by various cytokines, including interleukin-1 (IL-1), or when ectopically expressed together with the TAK1-binding protein TAB1. However, this molecular mechanism of activation is not yet understood. We show here that endogenous TAK1 is constitutively associated with TAB1 and phosphorylated following IL-1 stimulation. Furthermore, TAK1 is constitutively phosphorylated when ectopically overexpressed with TAB1. In both cases, dephosphorylation of TAK1 renders it inactive, but it can be reactivated by preincubation with ATP. A mutant of TAK1 that lacks kinase activity is not phosphorylated either following IL-1 treatment or when coexpressed with TAB1, indicating that TAK1 phosphorylation is due to autophosphorylation. Furthermore, mutation to alanine of a conserved serine residue (Ser-192) in the activation loop between kinase domains VII and VIII abolishes both phosphorylation and activation of TAK1. These results suggest that IL-1 and ectopic expression of TAB1 both activate TAK1 via autophosphorylation of Ser-192.  相似文献   

18.
Three families of phospholipase C (PI-PLCbeta, gamma, and delta) are known to catalyze the hydrolysis of polyphosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) to generate the second messengers inositol 1,4,5 trisphosphate and diacylglycerol, leading to a cascade of intracellular responses that result in cell growth, cell differentiation, and gene expression. Here we describe the founding member of a novel, structurally distinct fourth family of PI-PLC. PLCepsilon not only contains conserved catalytic (X and Y) and regulatory domains (C2) common to other eukaryotic PLCs, but also contains two Ras-associating (RA) domains and a Ras guanine nucleotide exchange factor (RasGEF) motif. PLCepsilon hydrolyzes PIP(2), and this activity is stimulated selectively by a constitutively active form of the heterotrimeric G protein Galpha(12). PLCepsilon and a mutant (H1144L) incapable of hydrolyzing phosphoinositides promote formation of GTP-Ras. Thus PLCepsilon is a RasGEF. PLCepsilon, the mutant H1144L, and the isolated GEF domain activate the mitogen-activated protein kinase pathway in a manner dependent on Ras but independent of PIP(2) hydrolysis. Our findings demonstrate that PLCepsilon is a novel bifunctional enzyme that is regulated by the heterotrimeric G protein Galpha(12) and activates the small G protein Ras/mitogen-activated protein kinase signaling pathway.  相似文献   

19.
Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery.  相似文献   

20.
The protein kinase KSR-1 is a recently identified participant in the Ras signaling pathway. The subcellular localization of KSR-1 is variable. In serum-deprived cultured cells, KSR-1 is primarily found in the cytoplasm; in serum-stimulated cells, a significant portion of KSR-1 is found at the plasma membrane. To identify the mechanism that mediates KSR-1 translocation, we performed a yeast two-hybrid screen. Three clones that interacted with KSR-1 were found to encode the full-length gamma10 subunit of heterotrimeric G-proteins. KSR-1 also interacted with gamma2 and gamma3 in a two-hybrid assay. Deletion analysis demonstrated that the isolated CA3 domain of KSR-1, which contains a cysteine-rich zinc finger-like domain, interacted with gamma subunits. Coimmunoprecipitation experiments demonstrated that KSR-1 bound to beta1 gamma3 subunits when all three were transfected into cultured cells. Lysophosphatidic acid treatment of cells induced KSR-1 translocation to the plasma membrane from the cytoplasm that was blocked by administration of pertussis toxin but not by dominant-negative Ras. Finally, transfection of wild-type KSR-1 inhibited beta1 gamma3-induced mitogen-activated protein kinase activation in cultured cells. These results demonstrate that KSR-1 translocation to the plasma membrane is mediated, at least in part, by an interaction with beta gamma and that this interaction may modulate mitogen-activated protein kinase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号