首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pCb plasmid encoding a beta-lactamase from Haemophilus ducreyi was transferred to Escherichia coli, purified, and characterized. The beta-lactamase could be isolated from a culture filtrate and further purified by ammonium sulfate and chelating Sepharose fast flow loaded with Zn(2+). The purified enzyme resulted in a major band at approximately 30-kDa on SDS-PAGE and its pI was determined to be 5.4. The beta-lactamase could hydrolyze both penicillin antibiotics including ampicillin, benzylpenicillin, and carbenicillin as well as cephalosporin antibiotics including nitrocefin, cephalothin, cephaloridine, and cefoperazone. However, benzylpenicillin was the best substrate. The enzyme activity was inhibited by clavulanic acid but not by boric acid, cefotaxime, ethylenediaminetetraacetic acid, or phenylmethylsulfonyl fluoride. The sequence of the beta-lactamase gene was also determined. It confirmed that the enzyme belonged to a class A beta-lactamase which had 99% identity to the ampicillin resistance transposon Tn3 of pBR322. Two nucleotides were different between the E. coli (Tn3) and H. ducreyi (pCb) genes that affected the amino-acid sequence. The valine at position 82 (ABL 84) was changed to isoleucine and the alanine at position 182 (ABL 184) was changed to valine. Genetic homogeneity among beta-lactamases is remarkable. Amino acid sequencing of some beta-lactamases has shown that substitution of only a few amino acids in the bla gene leads to high-level resistance against specific cephalosporins.  相似文献   

2.
Properties of a class C beta-lactamase from Serratia marcescens.   总被引:5,自引:3,他引:2       下载免费PDF全文
A beta-lactamase produced by a penicillin-resistant strain of Serratia marcescens was isolated and purified. The kcat. value for benzylpenicillin was about 5% of that observed for the best cephalosporin substrates. However, the low Km of the penam resulted in a high catalytic efficiency (kcat./Km) and the classification of the enzyme as a cephalosporinase might not be completely justified. It also exhibited a low but measurable activity against cefotaxime, cefuroxime, cefoxitin and moxalactam. Substrate-induced inactivation was observed both with a very good (cephalothin) or a very bad (moxalactam) substrate. The active site was labelled by beta-iodopenicillanate. Trypsin digestion produced a 19-residue active-site peptide whose sequence clearly allowed the classification of the enzyme as a class C beta-lactamase.  相似文献   

3.
Bacterial resistance to beta-lactam antibiotics is a serious problem limiting current clinical therapy. The most common form of resistance is the production of beta-lactamases that inactivate beta-lactam antibiotics. Toho-1 is an extended-spectrum beta-lactamase that has acquired efficient activity not only to penicillins but also to cephalosporins including the expanded-spectrum cephalosporins that were developed to be stable in former beta-lactamases. We present the acyl-intermediate structures of Toho-1 in complex with cefotaxime (expanded-spectrum cephalosporin), cephalothin (non-expanded-spectrum cephalosporin), and benzylpenicillin at 1.8-, 2.0-, and 2.1-A resolutions, respectively. These structures reveal distinct features that can explain the ability of Toho-1 to hydrolyze expanded-spectrum cephalosporins. First, the Omega-loop of Toho-1 is displaced to avoid the steric contacts with the bulky side chain of cefotaxime. Second, the conserved residues Asn(104) and Asp(240) form unique interactions with the bulky side chain of cefotaxime to fix it tightly. Finally, the unique interaction between the conserved Ser(237) and cephalosporins probably helps to bring the beta-lactam carbonyl group to the suitable position in the oxyanion hole, thus increasing the cephalosporinase activity.  相似文献   

4.
A colorimetric procedure for measuring beta-lactamase activity   总被引:4,自引:0,他引:4  
The enzymatic hydrolysis of benzylpenicillin was measured by a novel colorimetric procedure. The penicilloic acid generated from the hydrolysis of penicillin was reacted with CuSO4 and neocuproine to form a colored complex having a maximal absorption at 454.5 nm. A plot of absorbance versus beta-lactamase activity yielded a straight line from 1 to 5 mU of enzyme. Using TEM-1 as the model beta-lactamase, a Km of 46 microM was observed with benzylpenicillin serving as the substrate. When the assay was used to determine levels of benzylpenicillin, the absorbance was found to be linearly proportional to exogenously added penicillin from 2.8 to 88 microM. This procedure is simple to use and can be employed to measure the hydrolysis of other beta-lactam antibiotics.  相似文献   

5.
1. Pseudomonas pyocyanea N.C.T.C. 8203 produces a beta-lactamase that is inducible by high concentrations of benzylpenicillin or cephalosporin C. Methicillin appeared to be a relatively poor inducer, but this could be attributed in part to its ability to mask the enzyme produced. Much of the enzyme is normally cell-bound. 2. No evidence was obtained that the crude enzyme preparation consisted of more than one beta-lactamase and the preparation appeared to contain no significant amount of benzylpenicillin amidase or of an acetyl esterase. 3. The maximum rate of hydrolysis of cephalosporin C and several other derivatives of 7-aminocephalosporanic acid by the crude enzyme was more than five times that of benzylpenicillin. Methicillin, cloxacillin, 6-aminopenicillanic acid and 7-aminocephalosporanic acid were resistant to hydrolysis, and methicillin and cloxacillin were powerful competitive inhibitors of the action of the enzyme on easily hydrolysable substrates. 4. Cephalosporin C, cephalothin and cephaloridine yielded 2 equiv. of acid/mole on enzymic hydrolysis, and deacetylcephalorsporin C yielded 1 equiv./mole. Evidence was obtained that the opening of the beta-lactam ring of cephalosporin C and cephalothin is accompanied by the spontaneous expulsion of an acetoxy group and that of cephaloridine by the expulsion of pyridine. 5. A marked decrease in the minimum inhibitory concentration of benzylpenicillin and several hydrolysable derivatives of 7-aminocephalosporanic acid was observed when the size of the inoculum was decreased. This suggested that the production of a beta-lactamase contributed to the factors responsible for the very high resistance of Ps. pyocyanea to these substances. It was therefore concluded that the latter might show synergism with the enzyme inhibitors, methicillin and cloxacillin, against this organism.  相似文献   

6.
By use of a new computer-assisted u.v.-spectrophotometric assay method, the kinetic parameters of the reaction catalysed by Bacillus licheniformis 749/C beta-lactamase were re-examined and the mode of inhibition of the enzyme by compound PS-5, a novel beta-lactam antibiotic, was studied with benzylpenicillin as substrate. (1) The fundamental assay conditions for the determination of Km and V were examined in detail with benzylpenicillin as substrate. In 0.1 M-sodium/potassium phosphate buffer, pH 6.8, at 30 degrees C, initial substrate concentrations of benzylpenicillin above 0.7 mM were very likely to lead to substrate inhibition. The Km value of the enzyme for benzylpenicillin at initial concentrations from 1.96 to 0.07 mM was calculated to be 97-108 microM. (2) The Km values of the enzyme for 6-aminopenicillanic acid, ampicillin and cephaloridine were found to be 25, 154-161 and 144-161 microM respectively. (3) Compound PS-5 was virtually unattacked by Bacillus licheniformis 749/C beta-lactamase. (4) The activity of the enzyme was diminished by compound PS-5, to extents depending on the duration of incubation and the concentration of the inhibitor. The rate of inactivation of the enzyme by compound PS-5 followed first-order kinetics. (5) In an Appendix, a new computer-assisted u.v.-spectrophotometric enzyme assay method, in which a single reaction progress curve of time-absorbance was analysed by the integrated Michaelis-Menten equation, was devised for the accurate and precise determination of the kinetic constants of beta-lactamase. For conversion of absorbance readings into molar substrate concentrations, the initial or final absorbance reading that was independent of the reaction time was used as the basis of calculation. In calculation of Km and V three systematic methods of data combination were employed for finer analysis of the reaction progress curve. A list of the computer program named YF6TAIM is obtainable from the author on request or as Supplementary Publication SUP 50100 (12 pages) from the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

7.
The conserved Class A beta-lactamase active site residue Tyr-105 was substituted by saturation mutagenesis in TEM-1 beta-lactamase from Escherichia coli in order to clarify its role in enzyme activity and in substrate stabilization and discrimination. Minimum inhibitory concentrations were calculated for E. coli cells harboring each Y105X mutant in the presence of various penicillin and cephalosporin antibiotics. We found that only aromatic residues as well as asparagine replacements conferred high in vivo survival rates for all substrates tested. At position 105, the small residues alanine and glycine provide weak substrate discrimination as evidenced by the difference in benzylpenicillin hydrolysis relative to cephalothin, two typical penicillin and cephalosporin antibiotics. Kinetic analyses of mutants of interest revealed that the Y105X replacements have a greater effect on K(m) than k(cat), highlighting the importance of Tyr-105 in substrate recognition. Finally, by performing a short molecular dynamics study on a restricted set of Y105X mutants of TEM-1, we found that the strong aromatic bias observed at position 105 in Class A beta-lactamases is primarily defined by a structural requirement, selecting planar residues that form a stabilizing wall to the active site. The adopted conformation of residue 105 prevents detrimental steric interactions with the substrate molecule in the active site cavity and provides a rationalization for the strong aromatic bias found in nature at this position among Class A beta-lactamases.  相似文献   

8.
beta-Lastamase with the molecular weight of 32500 was isolated from the cells of clinical strain 6803 of Enterobacter aerogenes and purified. By the substrate profile determined microiodometrically beta-lactamase was classified as belonging to the cephalosporinase type. The activity of the electrophoretically homogenous enzyme was equal to 430 microM a minute per mg protein with respect to benzylpenicillin. The Km for benzylpenicillin, dicloxacillin, cephaloridin and cephalothin was 6.5410(-5), 3 X 10(-4), 2.1 X 10(-5) and 5.7 X 10(-5) M, respectively. The isoelectric point of the enzyme equal to 5.45 was estimated with the method of preparative isoelectrofocusing. The presence of the serine residue or residues was shown with the use of selective reagents applied to the functionally important groups. With the method of circular dichroism the ratio of alpha- and beta-structures in the enzyme molecule was determined, the slow hydrolysis of cephazolin was demonstrated and the values of Km and Kcat for this process were estimated.  相似文献   

9.
Thirteen strains of the gram-negative, facultative phototrophic bacterium Rhodobacter sphaeroides were examined fro susceptibility to beta-lactam antibiotics. All strains were sensitive to the semisynthetic penicillins ampicillin, carbenicillin, oxacillin, cloxacillin, and methicillin, but 10 of the 13 strains were resistant to penicillin G, as well as a number of cephalosporins, such as cephalothin, cephapirin, and cephalosporin C. A beta-lactamase (EC 3.5.2.6) with strong cephalosporinase activity was detected in all of the resistant strains of R. sphaeroides. With strain Y-1 as a model, it was shown that the beta-lactamase was inducible by penicillin G, cephalosporin C, cephalothin, and to some minor extent, cephapirin. The beta-lactamase was located in the periplasmic space, from which it could be extracted by osmotic shock disruption. By using this fraction, the beta-lactamase was purified 34-fold to homogeneity by steps involving batch adsorption to and elution from DEAE-Sephadex A50, chromatography on Q-Sepharose, and preparative polyacrylamide gel electrophoresis. The molecular masses of the native and denatured enzymes were determined to be 38.5 kilodaltons by gel filtration and 40.5 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating a monomeric structure. The isoelectric point was estimated to be at pH 4.3. In Tris hydrochloride buffer, optimum enzyme activity was measured at pH 8.5. The beta-lactamase showed high activity in the presence of the substrates cephalothin, cephapirin, cephalosporin C, and penicillin G, for which the apparent Km values were 144, 100, 65, and 110 microM, respectively. Cephalexin, cepharidine, and cephaloridine were poor substrates. The beta-lactamase was strongly inhibited by cloxacillin and oxacillin but only slightly inhibited by phenylmethylsulfonyl fluoride or thiol reagents such as iodoacetate and p-chloromercuribenzoate.  相似文献   

10.
The role of beta-lactamase and the permeability barrier on the activity of some beta-lactams against 53 strains of the Bacteroides fragilis group was investigated. Minimal inhibitory concentrations of cefamandole, cefoxitin, and cephalothin were determined with or without the addition of clavulanic acid and (or) ethylenediaminetetraacetate using an agar dilution technique. A significant increase of susceptibility with clavulanic acid indicated a role for beta-lactamase, and with ethylenediaminetetraacetate, a role for a permeability barrier. We found that both beta-lactamase and low permeability decreased the activity of the beta-lactams to some extent depending on the bacterial species and the antibiotic. The species-specific exception was B. distasonis which showed only a permeability barrier to all antibiotics tested.  相似文献   

11.
6-Acetylmethylenepenicillanic acid is a new kinetically irreversible inhibitor of various beta-lactamases. Interaction between 6-acetylmethylenepenicillanate and purified TEM-1 beta-lactamase during the inactivation process was investigated. 6-Acetylmethylenepenicillanate inhibited the enzyme in a second-order fashion with a rate constant of 0.61 microM-1 . S-1. The apparent inactivation constant decreased in the presence of increasing concentrations of the substrate benzylpenicillin. Native enzyme (pI 5.4) was converted into two inactive forms with pI 5.25 and 5.15, the latter form being transient and readily converted into the more stable form with pI 5.15. Even a 50-fold excess of inhibitor over enzyme did not produce any other inactivated species of the enzyme. All the results obtained suggest that 6-acetylmethylenepenicillanate is a potent irreversible and active-site-directed inhibitor of TEM-1 beta-lactamase.  相似文献   

12.
Several mutants of Streptococcus pneumoniae were isolated that appeared tolerant, to varying extents, to the lytic and bactericidal effects of some antibiotics that inhibit peptidoglycan synthesis, but were not deficient in autolytic activity. The method used to select the mutants was based on the survival of tolerant mutants during treatment with either bacitracin, benzylpenicillin, D-cycloserine plus beta-chloro-D-alanine, or vancomycin. Most (60 to 80%) of the surviving isolates were found to be deficient in autolytic activity, and these were rejected. The smaller proportion that had wild-type sensitivity to deoxycholate-induced lysis was studied further with respect to tolerance to the other antibiotics used in the selection procedures. Two of these mutants (selected by treatment with benzylpenicillin) were tolerant to either benzylpenicillin or D-cycloserine plus beta-chloro-D-alanine, but were supersusceptible, in terms of initiation of lysis, to either bacitracin or vancomycin. The minimal inhibitory concentration values of several antibiotics for these two mutants were identical to those for the wild-type strain. Moreover, the interaction of radioactive benzylpenicillin with the penicillin-binding proteins, examined in whole organisms, also appeared the same as previously found for either wild-type or autolytic-deficient strains of S. pneumoniae.  相似文献   

13.
The pH-dependence of class B and class C beta-lactamases.   总被引:5,自引:4,他引:1       下载免费PDF全文
The classification by structure allots beta-lactamases to (at present) three classes, A, B and C. The pH-dependence of the kinetic parameters for class B and class C have been determined. They differ from each other and from class A beta-lactamases. The class B enzyme was beta-lactamase II from Bacillus cereus 569/H/9. The plots of kcat against pH for the hydrolysis of benzylpenicillin by Zn(II)-requiring beta-lactamase II and Co(II)-requiring beta-lactamase II were not symmetrical, but those of kcat/Km were. A similar feature was observed for the hydrolysis of both benzylpenicillin and cephalosporin C by a class C beta-lactamase from Pseudomonas aeruginosa. The results have been interpreted by a scheme in which two ionic forms of an intermediate can give product, but do so at differing rates.  相似文献   

14.
Principles of detecting organisms producing beta-lactamase inhibitors among soil actinomycetes were developed. For detecting such cultures it was recommended to use the Gauze agarized medium No. 1 supplemented with beta-lactam antibiotics. Benzylpenicillin proved to be the most efficient. Various liquid fermentation media for detecting the inhibitory activity of soil actinomycetes were compared. Two media were the most favourable i.e. the glucose-yeast medium No. 18/3 and the soybean-glucose medium with Na2SO4 and CoCl2 No. 20/3. The use of test cultures with relatively low resistance to benzylpenicillin was shown expedient in screening cultures producing beta-lactamase inhibitors. Test cultures with high resistance should be used in more detailed characterization of the selected cultures.  相似文献   

15.
beta-lactamase from Streptomyces cacaoi. Purification and properties   总被引:6,自引:0,他引:6  
A beta-lactamase was purified to an apparently homogeneous state from Streptomyces cacaoi. The molecular weight calculated from the mobility in sodium dodecyl sulfate polyacrylamide gel electrophoresis was 34,000. pI was 4.7 and the optimal pH was 6.5. The optimum temperature was found to be between 40 degrees C and 45 degrees C, but the enzyme lost activity above 50 degrees C. N-Bromosuccinimide was the strongest inhibitor among the reagents tested, followed by iodine. p-Chloromercuribenzoate showed a weak inhibitory effect. Diisopropylfluorophosphate and sodium chloride did not show any inhibitory effect on the enzyme. The beta-lactamase catalyzed the hydrolysis of methicillin and cloxacillin at two-thirds to one-third the rate of benzylpenicillin. On the other hand, the enzyme hydrolyzed cephalosporins and 7-methoxycephalosporin only slowly. With benzylpenicillin as a substrate, the Km increased sharply with decreasing pH and the pK alpha estimated from the Km versus pH curve was 6.5 to 7.0. In contrast, with cloxacillin as a substrate, the Km showed a minimum at pH 7.5. The Vmax changed with pH in a bell-shaped curve in the case of benzylpenicillin, but the Vmax for cloxacillin changed only within a small range. In addition, the ratio of the hydrolysis rate of benzylpenicillin and cloxacillin at 30 degrees C and 20 degrees C (V30 degrees/V20 degrees) was found to be 1.23 and 1.55, respectively. These results indicate that the S. cacaoi beta-lactamase behaves differently toward benzylpenicillin and cloxacillin, although both are penicillins. S. cacaoi seems to release beta-lactamase into the culture medium soon after its biosynthesis without retaining it in the membrane and the soluble fraction. The possible relationships between beta-lactamases from Streptomyces and those from pathogenic bacteria are discussed.  相似文献   

16.
Two Yersinia enterocolitica strains were able to utilize the products of cephalothin degradation. The utilization of these products was shown by an increase of oxygen uptake by Y. enterocolitica with cephalothin as the only substrate, and by the growth of both strains with the hydrolysis products of cephalothin as sole energy and carbon sources. Nuclear magnetic resonance analysis of the cephalothin degradation reaction demonstrated the progressive disappearance of hydrolysis products. However, the products of benzylpenicillin degradation could not be utilized by Y. enterocolitica.  相似文献   

17.
Induction of beta-lactamase in Proteus vulgaris   总被引:4,自引:0,他引:4  
Various beta-lactam antibiotics, including monocyclic beta-lactams, induced the beta-lactamase of Proteus vulgaris; when clinical isolates were induced by benzylpenicillin, each strain produced a single beta-lactamase but the activity per milligram dry weight differed from strain to strain. The beta-lactamases of the P. vulgaris strains were heterogeneous with respect to their isoelectric points, but had almost the same specific activities, substrate specificities and Michaelis constants. The kinetics of beta-lactamase formation were investigated in three strains, each with a different beta-lactamase activity. Differential rates of enzyme synthesis and peak activity depended on the concentration of inducer. The plots of the reciprocals of the differential rates versus the reciprocals of the inducer concentrations were linear, and the maximum rate of enzyme synthesis and the concentration of the inducer giving half-maximum induction were determined from this double reciprocal plot. The maximum rates of enzyme synthesis were different in the three strains. The kinetic analysis of beta-lactamase formation revealed that the beta-lactamase activities in a single bacterial species were determined by differences in the rate of enzyme synthesis and not by differences in the properties of the enzyme.  相似文献   

18.
The sensitivity of 235 N. meningitidis strains to 5 antibiotics was estimated by the diameter of growth inhibition zones according to the criteria recommended by a Laboratory (Marseilles, France) collaborating with the WHO. All the strains proved to be sensitive to benzylpenicillin when disks containing 10 and 2 IU of the antibiotic were used. The strains were also shown to be sensitive to chloramphenicol and tetracycline. 95.7 and 7.7 per cent of the strains were sensitive to rifampicin and oleandomycin, respectively. When the strain sensitivity was assayed with the disks containing 10 and 2 IU of benzylpenicillin by the more severe criteria recommended by J. Saez-Nieto et al., significant changes were detected: meningococci with relative resistance to benzylpenicillin were detected in various regions of this country and the number of such strains was found to have a tendency to slightly increase.  相似文献   

19.
Sixteen methicillin-resistant strains of Staphylococcus aureus obtained from Europe were found to be sensitive to the lytic activity of lysotaphin. With only minor exceptions, the strains were found to be sensitive to novobiocin, erythromycin, fusidic acid, and lincomycin, and slightly less sensitive to vancomycin and chloramphenicol. All strains were resistant to tetracycline, penicillinase-sensitive penicillins (benzylpenicillin, ampicillin, and propicillin), penicillinase-resistant penicillins (methicillin, nafcillin, ancillin, oxacillin, cloxacillin, and dicloxacillin), and two cephalosporin antibiotics (cephalothin and cephaloridine).  相似文献   

20.
Residue Arg220 was found to be important for the acylation of the Streptomyces albus G beta-lactamase by classical penicillins and cephalosporins bearing a carboxylate on C3 or C4. The R220L mutant exhibited strongly decreased kcat/Km values for those compounds. Conversely the acylation rates by benzylpenicillin methylester and deacetylcephalosporin C lactone were little affected, indicating a direct or indirect role of that positively charged residue in the interaction of the enzyme cavity with the negative charge of the substrate. Surprisingly that residue is not conserved in all class A beta-lactamases but when it is not present it can be seen in the known tertiary structures that the guanidinium group of another arginine side chain (Arg244) is similarly positioned. The mutation affected the behaviour of the enzyme towards cephaloridine much less than towards cephalothin. This might represent an example of substrate-assisted catalysis where the disappearance of a positive charge on the enzyme is partly compensated by the presence of a similarly charged group on one of the substrate side chains. All the experimental results are nicely explained by computer-modelling of the enzyme-substrate interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号