首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The incorporation of long-chain fatty acids into phospholipids has been detected in adipocyte ghosts that were incubated with [1-14 C] stearic, [1-14 C] linoleic or [1-14 C] arachidonic acid. Adrenaline and adenosine activated this incorporation within 15 s of exposure of the ghosts to the hormones and the response was dose dependent. Maximum incorporation of labelled linoleic acid occurred at 10(-5) M adrenaline and 10(-7) M adenosine. The alpha-agonist phenylephrine and the beta-agonist isoproterenol were also shown to stimulate the incorporation of fatty acid in a dose dependent manner. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were each labelled preferentially with linoleic or arachidonic acid. p-Bromophenacylbromide, quinacrine and centrophenoxine inhibited the adrenaline-stimulated incorporation of fatty acids into ghost membrane phospholipids, and p-bromophenacylbromide also reduced the activation of adenylate cyclase by adrenaline. NaF, an activator of adenylate cyclase, like adrenaline, stimulated the incorporation of linoleic acid into ghost membrane phospholipids.  相似文献   

2.
The incorporation of [5,6(n)-3H]prostaglandin A1 (PGA1) and [1-14C]oleic acid into membrane phospholipids of rat liver microsomes was studied. It was shown that PGA1 is incorporated into phospholipids in a much lesser degree than oleic acid. PGA1 is incorporated into phosphatidylethanolamine and, in a lesser degree, into phosphatidylcholine and phosphatidylinositol + phosphatidylserine. The exogenous cofactors of fatty acid acylation (ATP, CoA, Mg2+) exert no marked influence on the incorporation of PGA1 into the phospholipids. PGA1 interacts with isolated rat liver phospholipids; the PGA1-phospholipid conjugate formed is not destroyed in the course of one- or two-dimensional thin-layer chromatography. On the other hand, PGA1 binding to unsaturated phosphatidylcholines is strictly dependent on the phospholipid oxidation index. It is concluded that PGA1 incorporation into rat liver phospholipids is a result of interaction of PGA1 with peroxidized phospholipids.  相似文献   

3.
Arachidonic acid, the most abundant polyunsaturated fatty acid in rat liver nuclei phospholipids is a major target of free radical attack, which induces lipid peroxidation. The non-enzymatic lipid peroxidation process in intact rat liver nuclei and in several chromatin fractions indicated that the most sensitive fatty acid for peroxidation is arachidonic acid C20:4 n-6. In this study, the effect of different amounts of arachidonic acid hydroperoxide on the lipid peroxidation of rat liver nuclei and chromatin fractions was studied; rat liver nuclei and chromatin fractions deprived of exogenous added hydroperoxide were utilized as control. The addition of arachidonic acid hydroperoxide to liver nuclei produces a marked increase in light emission that was hydroperoxide concentration dependent. The maximal peak of chemiluminescence displayed by the different chromatin fractions analyzed was observed between 20 and 80 min of incubation. The highest value of light emission was displayed by the high-density chromatin fractions, the 27.5 K fraction showed intermediate values of light emission, whereas the lowest density fraction produced very low chemiluminescence. A high correlation between arachidonic acid hydroperoxide concentration and chemiluminescence in the different chromatin fractions was observed. AC is Members of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.  相似文献   

4.
Abstract— Young rat cerebral-cortex slices were incubated with 32Pi in the absence and presence of ACh plus eserine, norepinephrine, dopamine or serotonin for 1 h. their cellular and subcellular fractions were isolated, and the specific radioactivities of the various phospholipids determined. In the neuronal- and astroglial-enriched fractions ACh plus eserine increased the 32P-labelling of phosphatidyl inositol (PhI) phosphatidic acid (PhA) and phosphatidylcholine (PhC) by increments which ranged from 108 per cent for PhI to 30 per cent for PhC and in the presence of norepinephrine or dopamine these increments ranged from 180 per cent for PhI to 29 per cent for PhC. In the subcellular fractions ACh plus eserine exerted maximal stimulatory effect on the labelling of the synaptosomal phospholipids, which was 88 per cent for PhI and 79 per cent for PhA, followed by those of microsomes, mitochondria and nuclei. ACh plus eserine exerted no effect on [l4C]glucose incorporation, but inhibited the incorporation of [14C]glycerol into phospholipids by amounts which ranged from 30 per cent for PhI to 3 per cent for PhE. Although the rate of incorporation of 32Pi into phospholipids of 0.2 mm slices was higher than that of the 0.5 mm slices the stimulatory effect of ACh plus eserine on the 32Pi incorporation into the lipids of the latter was higher. When neuronal- and astroglial enriched fractions were first isolated from the cerebra then incubated with 32Pi or [14C]choline, labelling of phospholipids in the neuronal fraction was higher than that of the astroglial fraction; however, ACh plus eserine had no effect on the incorporation of 32Pi into the lipids of either fraction. ACh plus eserine stimulated the activity of phosphatidic acid phosphatase in the various subcellular fractions by increments which ranged from 13 per cent in nuclei to 37 per cent in microsomes. It was concluded that the nonspecific localization of the neurotransmitter effect could be due to the widespread distribution of the enzymes which appear to be responsive to cholinergic and adrenergic neurotransmitters.  相似文献   

5.
The synthesis of phospholipids found in microsomes, in the nuclei and in chromatin has been studied in rat liver after partial hepatectomy. [32P]O4(2-)incorporation in phospholipids has been compared with that of (3H) thymidine over a period of 48 h after operation. The presence of two peaks of DNA synthesis has been observed at 18 and 36 h; nuclear phospholipids show a continuous synthesis starting from 12 h, whereas the microsomes show two peaks at 12 and 24-30 h. The specific activity of the chromatin phospholipid fraction increases at 12h, doubles its initial value at 18 h, shows a peak at 30 h and comes back to the initial value at 48 h. It is concluded that chromatin phospholipids increase their synthesis in relation to the S phase of the cell cycle, whereas those of the nuclear membranes do not change the rate of synthesis throughout the cell cycle. The possibility is suggested that chromatin phospholipids are synthesized in the microsomes and transferred to the nucleus.  相似文献   

6.
[14C]OleoylCoA was incorporated into phosphatidylinositol 412 times more efficiently than into phosphatidylserine in rat brain and liver microsomes when incubated with various levels of 1-acyl-sn-glycero-3-phosphoserine. In contrast, 1-acyl-sn-glycero-3-phosphocholine dependent incorporation of oleoylCoA was only into phosphatidylcholine. When [l-3H]serine labeled 1-acyl-sn-glycero-3-phosphoserine was used as the labeled substrate, no phosphatidylserine synthesis could be detected in rat brain microsomes. OleoylCoA incorporation in phospholipids in the presence of lysophosphatidylserine was primarily at the 2-position while stearoylCoA was incorporated at the 1-position. These results are interpreted to suggest that there is no acylCoA:1-acyl-sn-glycero-3-phosphoserine acyltransferase in rat brain microsomes and the lysophosphatidylserine dependent position-specific incorporation of acylCoA into various phospholipids may be due to an exchange reaction. A simple highly reproducible one dimensional thin-layer chromatographic system is described for the separation of all the major phospholipids of brain and liver.  相似文献   

7.
Isolated hepatocytes were incubated in the presence of [14C]palmitic, [14C]linoleic or [14C]linolenic acid and the time-courses of incorporation of radioactivity into phosphatidylcholine and phosphatidylethanolamine of microsomes and mitochondria were followed. For this purpose a procedure was developed for HPLC separation of 9-diazomethylanthracene (ADAM) derivatives of fatty acids. When [14C]palmitic acid was used, the major product of elongation and desaturation was octadecadienoic acid, which accounted for 35-65% of the total radioactivity. Labeled palmitoleic, stearic and oleic acids could also be isolated. In fatty acids which do not participate to any large extent in deacylation-reacylation reactions, the pattern of incorporation was characteristic: a high rate of incorporation into microsomal and a low rate of incorporation into mitochondrial phospholipids during the first 40 min, followed by a decrease in the former and an increase in mitochondrial labeling. This pattern is consistent with the fact that de novo synthesis of these two phospholipids occurs in the endoplasmic reticulum in vivo. When cells were incubated in the presence of [14C]linoleic acid, 70-90% of the radioactivity recovered in phospholipids was in this same form, whereas the remaining label was mainly in arachidonic acid and, to some extent, in eicosatrienoic acid. When hepatocytes were incubated in the presence of [14C]linolenic acid, 70-85% of the radioactivity in isolated phospholipids was associated with linolenic acid. As much as 20% of the label was recovered in docosahexanoic acid and 5-10% in arachidonic acid. In the case of the two latter labeled substrates the exchange reactions seem to dominate over de novo synthesis. For phospholipids synthesized de novo the transfer from the endoplasmic reticulum to mitochondria requires about 3 h.  相似文献   

8.
Isolated liver cells from rats fed a diet deficient in essential fatty acids were used to study the oxidation, esterification and, especially, the desaturation and chain elongation of [1-14C]linoleic acid. 14C-labelled arachidonic acid (20:4) and smaller amounts of eicosatrienoic acid (20:3) were recovered mainly in the phospholipids, while gamma-linolenic acid (18:3) was found in both the phospholipids and the triacylglycerol fraction. Lactate strongly increased the formation of arachidonic acid, which was found mainly in the phosphatidylcholine and the phosphatidylinositol fractions. Lactate reduced the amounts of gamma-linolenic acid. Glucagon and (+)-decanoylcarnitine reduced the formation of arachidonic acid, and (+)-decanoylcarnitine increased the incorporation of gamma-linolenic acid especially, in the triacylglycerol fraction. Increasing concentrations of the [1-14C]linoleic acid substrate increased the formation of arachidonic acid and of the other chain-elongated or desaturated fatty acids. Lactate also stimulated the formation of arachidonic acid in liver cells from animals fed adequate amounts of essential fatty acids. It is suggested that dietary and hormonal factors which can change the intracellular levels of malonyl-CoA may influence both the ratio of arachidonic acid/gamma-linolenic acid formed and the total amounts of desaturated and chain-elongated fatty acids formed from linoleic acid.  相似文献   

9.
The pretreatment of rat liver mitochondrial fractions with phospholipase C preparations enhanced the incorporation of cytidine diphospho-[14C]-choline into phospholipids several-fold. Similar pretreatment of the microsomal fraction produced a similar stimulation. When the extent of microsomal contamination in the mitochondria was determined, and increments of pretreated microsomes were added to the mitochondria, the incorporation values extrapolated to zero for zero microsomal contamination. It was concluded that lecithin biosynthesis from endogenous diglycerides in the mitochondrial fractions could be ascribed to contaminating microsomes.  相似文献   

10.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

11.
The content of lipid phosphorus and the rate of [1-14C]palmitate incorporation into individual phospholipids of rat embryonic liver, kidney, spleen, brain, and placenta at different stages of prenatal development were studied. It was shown that the level of neutral phospholipids at all stages is much higher than that in acid fractions; however, the rate of the acid fraction exchange is 10 times higher depending on the age of the embryos. The specific radioactivity of individual fractions of embryonic rat tissue largely exceeds that in adult animals.  相似文献   

12.
N-Acylethanolamine phospholipids were produced from endogenous substrates with dog heart mitochondrial and microsomal preparations. With mitochondria the N-acyl group contained 13.8% linoleate, with microsomes only 3.6%. Cardiolipin comprised 18.5% of mitochondrial and 3.3% of microsomal lipid P and contained 93.7 and 72.4% linoleic acid, respectively. Incubation of dog heart subcellular fractions with [1-14C]linoleoyl cardiolipin in the presence of Ca2+ resulted in the formation of N-acylethanolamine phospholipids labeled primarily in the N-acyl and 1-O-acyl moieties. The data indicate that cardiolipin is the major source of linoleic acid used in the N-acylation of ethanolamine phospholipids by transacylase activity.  相似文献   

13.
The aim of the present study was to examine the effect of triiodothyronine (T3) on the content of phospholipids and on the incorporation of blood-borne palmitic acid into the phospholipid moieties in the nuclei of the rat liver. T3 was administered daily for 7 days, 10 microg x 100 g(-1). The control rats were treated with saline. Each rat received 14C-palmitic acid, intravenously suspended in serum. 30 min after administration of the label, samples of the liver were taken. The nuclei were isolated in sucrose gradient. Phospholipids were extracted from the nuclei fraction and from the liver homogenate. They were separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. The content and radioactivity of each fraction was measured. It was found that treatment with T3 reduced the content of phosphatidylinositol and increased the content of cardiolipin in the nuclear fraction. In the liver homogenate, the content of phosphatidylinositol decreased and the content of phosphatidylethanolamine and cardiolipin increased after treatment with T3. The total content of phospholipids after treatment with T3 remained unchanged, both in the nuclear fraction and in the liver homogenate. T3 reduced the specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin and had no effect on the specific activity of sphingomyelin and phosphatidylinositol both in the fraction of the nuclei and the liver homogenate. It is concluded that excess of triiodothyronine affects the content of phospholipids in the nuclei. The changes in the content of phospholipids in the nuclei largely reflect changes in their content in the liver.  相似文献   

14.
The authors studied 1-14C-palmitate metabolism in rat muscle, renal cortex and liver incubated with synthetic hippurate in vitro (1 mmol/l). a) Hippurate did not affect 1-14C-palmitate uptake and utilization in the muscle (hemidiaphragm). b) In the renal cortex it stimulated only the incorporation into total lipids and from the individual lipid fractions into mono- and diglycerides and free fatty acids (FFA). c) In the liver it stimulated the uptake, oxidation to 14CO2 and incorporation into total lipids and, out of the individual lipid fractions, into phospholipids, triacylglycerols and free fatty acids. d) Hippurate already had a significant effect in the concentration of 0.5 mmol/l, i.e. during the development of the disturbance and not just as a supplementary factor in advanced renal insufficiency. It is concluded that, by interfering with fatty acid metabolism, the hippurate present in the serum of patients with renal insufficiency plays an active role in the development of dyslipoproteinaemia in such patients.  相似文献   

15.
Acyl-CoA synthetase (ACS) catalyzes the activation of long-chain fatty acids to acyl-CoAs, which can be metabolized to form CO(2), triacylglycerol (TAG), phospholipids (PL), and cholesteryl esters (CE). To determine whether inhibiting ACS affects these pathways differently, we incubated rat hepatocytes with [(14)C]oleate and the ACS inhibitor triacsin C. Triacsin inhibited TAG synthesis 70% in hepatocytes from fed rats and 40% in starved rats, but it had little effect on oleate incorporation into CE, PL, or beta-oxidation end products. Triacsin blocked [(3)H]glycerol incorporation into TAG and PL 33 and 25% more than it blocked [(14)C]oleate incorporation, suggesting greater inhibition of de novo TAG synthesis than reacylation. Triacsin did not affect oxidation of prelabeled intracellular lipid. ACS1 protein was abundant in liver microsomes but virtually undetectable in mitochondria. Refeeding increased microsomal ACS1 protein 89% but did not affect specific activity. Triacsin inhibited ACS specific activity in microsomes more from fed than from starved rats. These data suggest that ACS isozymes may be functionally linked to specific metabolic pathways and that ACS1 is not associated with beta-oxidation in liver.  相似文献   

16.
The in vivo and in vitro effect of ACTH on the biosynthesis of polyunsaturated fatty acid of rat adrenal gland and liver was studied. The administration of ACTH to intact rats produced a significant decrease in the conversion of [1-14C]linoleic acid to gamma-linolenic acid, [1-14C]alpha-linolenic acid to octadeca-6,9,12,15-tetraenoic acid, and [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid in liver and adrenal microsomes. Isolated adrenocortical cells and hepatocytes obtained from animals treated with ACTH showed a decrease in the incorporation and desaturation of exogenous [1-14C]eicosa-8,11,14-trienoic acid. The addition of ACTH to the incubation medium of adrenocortical cells and hepatocytes isolated from untreated rats also caused a decrease in delta 5 desaturation activity. The effect of ACTH on adrenal and liver desaturases could be produced as a consequence of the release of glucocorticoids, already measured in the experiments. However, the in vitro experiments carried out with hepatocytes isolated from untreated rats, where corticosterone was absent, indicated that ACTH can depress delta 5 desaturation per se.  相似文献   

17.
The unsaturated fatty acids that rapidly accumulate during ischemia are thought to participate in inducing irreversible brain injury, especially because they are highly susceptible to peroxidation when the tissue is reoxygenated. Our hypothesis was that peroxidation products of unsaturated fatty acids interfere with the reacylation of synaptic phospholipids, a process essential to membrane repair. To test this hypothesis, we have examined the effect of fatty acid hydroperoxides on incorporation of [1-14C]arachidonic acid into synaptosomal phospholipids. Rat forebrain synaptosomes were incubated with arachidonic or linoleic acid hydroperoxides and [14C]arachidonate, and then lipids were extracted and separated by TLC. Both hydroperoxides inhibited [14C]arachidonate incorporation into phospholipids in a concentration-dependent manner, with 50% inhibition occurring at less than 25 microM hydroperoxide, in both the absence and presence of exogenous lysophospholipids. The inhibition was of the non-competitive type. It is concluded that (a) low levels of fatty acid hydroperoxides inhibit the reacylation of synaptosomal phospholipids, and (b) this inhibition may constitute an important mechanism whereby peroxidative processes contribute to irreversible brain damage.  相似文献   

18.
《L' Année biologique》1999,38(1):17-26
Incorporation of 14C fatty acids in phospholipids of plasma membranes and sarcoplasmic reticulum of rat heart was studied. Mainly phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were labelled. Our studies showed that the incorporation of unsaturated fatty acids (oleic and linoleic acid) was higher than for saturated fatty acids (palmitic and stearic acid). The range of uptake was between 0.2 and 2.2 nmol·mg−1 protein·h−1 and 0.5–7.4 nmol·μgatom−1 P1·h−1, respectively. Uptake of activity in individual phospholipids (measured after separation on TLC) was calculated as percentage of total activity. Incorporation in phosphatidylcholine was higher than in phosphatidylethanolamine. Phosphatidylcholine showed an increasing sequence for the following fatty acids: C18:0 < C16:0 < C18:0 < C18:2. However, phosphatidylethanolamine showed a decreasing sequence for the incorporation of the same fatty acids. Labelling of PC was always greater than for PE, except for stearic acid which was better incorporated into phosphatidylethanolamine. Uptake of the same fatty acid into phospholipids of sarcoplasmic reticulum was always higher than uptake into plasma membranes. As incorporation of fatty acids bound to albumin was studied in isolated membranes of rat heart, the addition of ATP and CoASH was an absolute requirement.  相似文献   

19.
It has been shown that the induction of D-RNA synthesis in rat liver nuclei by electrostimulation of hypothalamus is accompanied by a decrease in chromatin protein synthesis and an increase in phosphorylation and acetylation of chromatin proteins. The decrease of the histone synthesis is mainly due to the decrease of [14C]lysine and [14C]alanine incorporation into histones H1 and H4. The relationship between H1, H2b-H3, H2a and H4 histone fractions remains unchanged. Electrostimulation of hypothalamus increases acetylation of H2a and H4 histone fractions and phosphorylation of all histones with the exception of histone H1.  相似文献   

20.
The incorporation of [14C]oleic and [14C]linoleic acid into phospholipids and neutral lipids was compared in two recently immortalized airway epithelial cell lines. In addition, the effects of adrenergic stimulation on phospholipid turnover was examined. Both cell lines readily incorporated the fatty acids into all phospholipid and neutral lipid fractions. Isoproterenol (1 microM) induced Ca2+ transients in both cell lines, indicating a functional beta-adrenergic response. Epinephrine (10 microM; 15 min) stimulation of cells prelabeled with [14C]linoleic acid increased the percentage of label in phosphatidylcholine in one cell line. Lipid metabolism can now be extensively studied in human airway epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号