首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New observations are presented on the ontogeny, vasculature and morphology of both staminate and pistillate flowers of Croton and Astraea. These data support earlier hypotheses that the filamentous structures in pistillate flowers represent reduced and transformed petals. Staminate flowers of both genera possess five free nectaries, which are vascularised by divergences of the sepal traces in Croton and unvascularised in Astraea. In pistillate flowers, there are five separate non-vascularised nectaries in Astraea, but in Croton there is a single nectariferous disk that is vascularised by divergences of the sepal traces. The nectaries are initiated late in floral development, but their location indicates that they could represent the outer stamen whorl transformed into secretory staminodes. Other glandular structures occur in pistillate flowers of most Croton species, resulting in flowers with two secretory organ whorls. In these cases, the inner whorl is formed by modified staminodes. Our observations support the recent segregation of Astraea species from the larger genus Croton. Despite strong similarities between the two genera, there are clear structural differences, including the presence of colleters in Astraea (absent in Croton), moniliform trichomes on petals (rather than simple trichomes in Croton), non-vascularised nectaries (vascularised in Croton) and reduced, non-secretory filamentous structures (well developed and secretory in Croton).  相似文献   

2.
林祁  段林东  袁琼 《植物研究》2008,28(6):648-652
报道了单性木兰(Kmeria septentrionalis Dandy)花的形态发生过程。发现过去一直被认为是雌花条状披针形的“内轮花被片”,实际为退化雄蕊,它形态发生的时间与位置均与雄花的雄蕊相同,在成熟结构中仍可见药室残迹,说明单性木兰的雌性花是由两性花退化而来。通过与K. duperreana(Pierre) Dandy和Magnolia thailandica Noot. &; Chalermglin雌花的比较,发现它们雌花的形态相同,从而得知人们长期以来对此3种植物雌花的认识有误,原一直认为的“内轮花被片”实为退化雄蕊。  相似文献   

3.
Background and AimsFloral developmental studies are crucial for understanding the evolution of floral structures and sexual systems in angiosperms. Within the monocot order Poales, both subfamilies of Eriocaulaceae have unisexual flowers bearing unusual nectaries. Few previous studies have investigated floral development in subfamily Eriocauloideae, which includes the large, diverse and widespread genus Eriocaulon. To understand floral variation and the evolution of the androecium, gynoecium and floral nectaries of Eriocaulaceae, we analysed floral development and vasculature in Eriocaulon and compared it with that of subfamily Paepalanthoideae and the related family Xyridaceae in a phylogenetic context.MethodsThirteen species of Eriocaulon were studied. Developmental analysis was carried out using scanning electron microscopy, and vasculature analysis was carried out using light microscopy. Fresh material was also analysed using scanning electron microscopy with a cryo function. Character evolution was reconstructed over well-resolved phylogenies.Key ResultsPerianth reductions can occur due to delayed development that can also result in loss of the vascular bundles of the median sepals. Nectariferous petal glands cease development and remain vestigial in some species. In staminate flowers, the inner stamens can emerge before the outer ones, and carpels are transformed into nectariferous carpellodes. In pistillate flowers, stamens are reduced to staminodes and the gynoecium has dorsal stigmas.ConclusionsFloral morphology is highly diverse in Eriocaulon, as a result of fusion, reduction or loss of perianth parts. The nectariferous carpellodes of staminate flowers originated first in the ancestor of Eriocaulaceae; petal glands and nectariferous branches of pistillate flowers originated independently in Eriocaulaceae through transfer of function. We present a hypothesis of floral evolution for the family, illustrating a shift from bisexuality to unisexuality and the evolution of nectaries in a complex monocot family, which can contribute to future studies on reproductive biology and floral evolution in other groups.  相似文献   

4.
Seven species from five genera of Annonaceae were studied with regard to their flower biology and pollination in the Southwest Province of Cameroon, West Africa. They have protogynous hermaphroditic flowers, with exception of Uvariopsis species, which are monoecious. Fused petals of Isolona campanulata remain apically spreading and open during anthesis but form a deep basal urceolate tube around the reproductive organs. At anthesis the yellow pendent flowers emit a fruit-like scent and attracted small beetles, the likely pollinators. Piptostigma sp. flowers also emit a fruit-like scent but provide a closed pollination chamber formed by the three inner petals. Small staphylinid beetles attracted during the female stage of anthesis are released from the flowers at the end of the male stage 2-3 days later. Both species have diurnal anthesis, attracting and releasing the flower visitors during daytime. In contrast, Uvariodendron connivens and U. calophyllum have nocturnal anthesis with floral thermogenesis, produce spicy, aromatic and fruity scents and attract large Scarabaeidae beetles, the pollinators, along with many curculionid beetles, which were principally predators of the thick petals. The very large flowers of Monodora tenuifolia have yellowish petals which are spotted with dark red markings. Together with the sweetish, slightly disagreeable scent the flowers attract flies, principally dung flies. The two investigated Uvariopsis species are monoecious with pistillate and staminate flowers being functional at the same time. The violet red flowers of U. bakeriana visually seem to mimic the fruiting body of certain stinkhorn fungi (Phallaceae) although without producing their strong unpleasant carcass stench. Flower-visiting dung flies were rare. Conversely, U. congolana has a strong fungus-like scent, its flowers are presented at litter height and dung flies living in the litter were the flower visitors, albeit sporadic. The 4-5 days lasting anthesis of both Uvariopsis species appears to be an evolutionary consequence of their diffuse pollinator spectra. The studied African Annonaceae therefore have either cantharophilous or myiophilous/sapromyiophilous flowers with, in part, respectively, remarkably long anthesis, thermogenesis, and widely open, large flowers - all attributes unknown or rare in the hitherto better studied Neotropical Annonaceae.  相似文献   

5.
The formation of capitulum inflorescence with two different types of floret is an interesting issue in floral biology and evolution. Here we studied the inflorescence, floral ontogeny and development of the everlasting herb, Xeranthemum squarrosum, using epi‐illumination microscopy. The small vegetative apex enlarged and produced involucral bracts with helical phyllotaxy, which subtended floret primordia in the innermost whorl. Initiation of floret primordia was followed by an acropetal sequence, except for pistillate peripheral florets. The origin of receptacular bracts was unusual, as they derived from the floral primordia rather than the receptacular surface. The order of whorl initiation in both disc and pistillate flowers included corolla, androecium and finally calyx, together with the gynoecium. The inception of sepals and stamens occurred in unidirectional order starting from the abaxial side, whereas petals incepted unidirectionally from the adaxial or abaxial side. Substantial differences were observed in flower structure and the development between pistillate and perfect florets. Pistillate florets presented a zygomorphic floral primordium, tetramerous corolla and androecium and two sepal lobes. In these florets, two sepal lobes and four stamen primordia stopped growing, and the ovary developed neither an ovule nor a typical stigma. The results suggest that peripheral pistillate florets in X. squarrosum, which has a bilabiate corolla, could be considered as an intermediate state between ancestral bilabiate florets and the derived ray florets.  相似文献   

6.
Growth regulators participate in the differentiation of floral parts, determining the developmental path of the respective type of inflorescence. The effect depends on the expression of the peculiarities of floral part differentiation, the recognition of the character of endogenous substances in certain stages and the choice of the suitable regulator for application. In the primitive flower ofPapaver petals and stamens are formed from the peripheral meristem with a lower content of auxins and a higher level of gibberellic substances. The pistil arises later from central tissues with a higher level of auxins and inhibitory substances. The stamens are more sensitive to the higher level of auxin substances, and by a suitable application of GA3 and BAP they can be transformed into petals; in this way double flower forms arise. In the differentiation of floral parts ofCampanula, Rosa andMelandrium similar regularities assert themselves in time successions, but in another spatial arrangement. Sex differentiation of diclinous flowers ofMelandrium is based on differences in heterochromosomes XY and XX. The rise of the zygomorphic flower ofVeronica is accompanied by a different distribution of endogenous substances which affect the development of petals, stamens and the pistil. The differentiation of flowers in the racemose inflorescence occurs in the acropetal succession, and lateral primordia inCampanula develop into actinomorphic regular flowers, whereas inDigitalis they are zygomorphic and only the terminal flower is peloric. In the initial phases the staminate tassel and the pistillate ear in maize are identical. Earlier differentiation of the terminal pistillate tassel is connected with a higher level of gibberellins and the later development of the lateral pistillate ear is accompanied by the increase in auxin-like substances and inhibitions. Similar correlations were found in the development of staminate catkins and the differentiation of pistillate flowers in terminal buds ofJuglans regia. By the application of auxin-like substances it is possible to achieve the transformation of primordia of the staminate tassel into the pistillate ear in maize or to regulate the number of staminate catkins and pistillate flowers on twigs of the walnut tree. In the capitulum of the sunflower differences arise between peripheral pistillate ray flowers and hermaphrodite tubular ones. By applying GA3 and BAP the number of ray flowers is increased. If the normal course of inflorescence differentiation is affected with a suitable type of regulator, a range of floral abnormalities appears which permit to assess the intervention in different developmental stages and the reaction of the primordium to the applied type of regulator. Abnormalities also suggest some phylogenetic correlations.  相似文献   

7.
Floral anatomy and development of Saxofridericia aculeata Körn was studied in a comparative approach to contribute to the understanding of the family. Flowers at different developmental stages were analysed with light and scanning electron microscopy, and the nature of the exudate secreted by the floral trichomes was investigated by histochemical tests. The anatomical characteristics observed in S. aculeata flowers were compared with those from other Rapateaceae species by a cluster analysis (UPGMA). The dendrogram generated reflects the groupings that emerged in phylogenetic molecular analyses, highlighting the usefulness of floral anatomy for taxonomy and for the understanding of infrafamilial relationships. The exudate secreted by the trichomes has a polysaccharidic composition. Such trichomes (colleters) occur in the sepals, petals, filaments and around the gynoecium; they are initiated at mid-stage of floral development and are an apomorphy of the family. The flowers are pentacyclic, presenting three initially free sepals, petals, stamens and carpels that mature in a centripetal order. The connate portion of the corolla, which is also adnate to the stamens, has a late development by zonal growth. Gynoecium formation is a combination of postgenital and congenital fusion processes. Data on floral organogenesis of Rapateaceae are first reported here and support the early diverging position of the family in Poales, close to Bromeliaceae.  相似文献   

8.
9.
Flowering and fruiting biology of Magnolia ovata was studied in Atlantic forests in the interior of São Paulo State, Brazil. The large, bisexual flowers are protogynous, nocturnal, thermogenic and emit a strong scent in two consecutive evenings. In the first night of anthesis, the flowers are in the pistillate stage and thermogenesis starts at about sunset and lasts about 3 h. In the second night, the flowers enter the staminate stage and produce heat for 4 h. Heat is generated by the petals, gynoecium and anthers. Temperatures measured inside the petals reach 26.7 °C and 31.9 °C in the pistillate and staminate stages, 6.0 and 10.6 °C above ambient air, respectively. In the pistillate stage, the perianth opens after sunset and closes tightly a few hours later, and remains closed until the next evening. The initial opening and closing, however, is not synchronous for all flowers during the night. In the following evening, flowers in the staminate stage again open and remain so until the petals drop. Scent compounds, analyzed by GC–MS, contain C5-branched chain compounds, aliphatics, benzenoids and monoterpenoids. Emission of the most prominent compound, C5-branched methyl 2-methyl butyrate, commences before flower opening and continues throughout anthesis, but is accentuated in the thermogenic pistillate and staminate stages. Female and male individuals of only one beetle species, the dynastid scarab Cyclocephala literata, are attracted to the scented flowers in both pistillate and staminate stages. Once inside the flowers they feed on the petals and mate. Tests with synthetic methyl 2-methyl butyrate indicate that this compound is a strong attractant for the beetles. Because this scent compound is strongly emitted in both pistillate and staminate stages, the beetles fly indiscriminately between flowers of both stages. This behavior enhances pollen mixing and effective cross-pollination of the self-compatible species. The evolutionary history of Magnolia appears to be influenced by an ancestral condition of dynastid scarab beetle pollination. Large magnolia flowers are best explained as an archaic structure resulting from the initial association of tropical American species of section Talauma with large and voracious dynastid beetles.  相似文献   

10.
以采自中国多地并同质园栽培于吉首大学种质资源圃的21种淫羊藿为研究材料,通过观测这些物种的花梗长、花直径、内萼片长宽、蜜距长、雌雄蕊长、花药长、花柱长、胚珠数、花粉大小及花粉量等16个花部特征数量性状和花序类型、有无蜜距、花瓣颜色、内萼片颜色、内萼片与花瓣相对长度及花粉颜色6个质量性状,并对其分类学意义进行探讨。结果表明,(1)21种淫羊藿内轮萼片花瓣状,4枚花瓣除无距淫羊藿外均特化成蜜距,但花部形态种间存在显著差异,尤其体现于花直径、内萼片长宽、蜜距长、雌蕊长、胚珠数、花粉量、花粉直径等特征。(2)主成分分析显示花直径、内萼片长、花药长、胚珠数和花粉直径等性状信息负荷量较大,在该属分类中起主要作用。(3)根据花部特征聚类分析,物种间区分良好,21物种可分为4支:第1支花小,花瓣短于内轮萼片,囊状距或兜状距;第2支花较大,花瓣远长于内轮萼片,长距状;第3支花小,花瓣没有特化形成蜜距;第4支花较小,花丝伸长明显,可达10 mm,花蜜距呈钻状。(4)依据所观察到的花部形态特征编写了淫羊藿属21种植物花部特征分种检索表。研究认为,基于同质园栽培下的淫羊藿属物种的花部特征具有分类学意义,可以为该属分类提供一定依据。  相似文献   

11.
The flowers of mangrove Rhizophoraceae (tribe Rhizophoreae) are adapted to three different pollination mechanisms. Floral development of representative species of all four genera suggests that the ancestral flower of the tribe was unspecialized, with successively initiated whorls of separate sepals, petals, antisepalous stamens, and antipetalous stamens; at its inception, the gynoecium had a united, half-inferior ovary and separate stigmatic lobes. This developmental pattern is found in Rhizophora mangle (wind-pollinated) and Ceriops decandra (insect-pollinated). In Kandelia, all floral organs distal to the sepals are initiated simultaneously, and there has apparently been an evolutionary amplification in the number of stamens to about six times the number of petals. Explosive pollen release evolved independently in C. tagal and in Bruguiera. In the former, all stamens belong to one whorl and arise simultaneously upon a very weakly differentiated androecial ring primordium. In Bruguiera, the androecial ring is pronounced, and two whorls of stamens arise upon it; the primordia of the antisepalous whorl arise first but are closer to the center of the apex than the antipetalous stamen primordia. The antisepalous stamens bend toward and are enclosed by the petals early in development. In all genera, the inferior ovary develops by zonal growth of receptacular tissue; additional intercalary growth above the placenta occurs in Bruguiera. In general, floral specialization is accompanied by an increase in the width of the floral apex compared to the size of the primordia, increasing fusion of the stylar primordia, and decreasing prominence of the superior portion of the ovary. Apparent specializations of petal appendages for water storage, including the presence of sub-terminal hydathodes (previously unreported in any angiosperm), were found in two species in which flowers remain open during the day but were absent from two species normally pollinated at night or at dawn. Distinctive tribal characteristics that may aid in phylogenetic analysis include the mode of development of the inferior ovary; the aristate, bifid, usually fringed petals that individually enclose one or more stamens; the intrastaminal floral disc; and the initially subepidermal laticiferous cell layer in the sepals and ovary.  相似文献   

12.
In the protologue, Epimedium tianmenshanense (Berberidaceae), a species endemic to western Hunan, China, was described as ‘flower small, 0.2–0.4 cm diam., inner sepals white, petals as long as inner sepals or a little shorter than the latter, spur very short, ca 5.0 mm’. However, both morphological characteristics and molecular evidence suggest that E. tianmenshanense is closely related to E. baojingense, a taxon with a long spur, thus suggesting that the size of the floral parts is not as reliable as previously believed. When investigating the variability of E. tianmenshanense in more detail, in the field as well as in cultivation, we found that the petals were are highly variable in morphology (both shape and size), being cucullate, subulate, short to long spurred, and with various transitions. The flowers size varied from small to large accordingly. The flowers with cucullate and subulate petals, which were a little shorter than the inner sepals or almost as long as the latter, were small (about 0.8 cm in diameter). The flowers with long spurs, which were much longer than the inner sepals, were also large (about 2.5–3.5 cm in diameter). Finally, the flowers with short spurs, which were a little longer than the inner sepals, were medium-sized (about 1.0–1.2 cm in diameter). In addition, the color of inner sepals was revised from ‘white, occasionally light mulberry-purple’ to yellowish green or yellowish white. Epimedium tianmenshanense is a perfect example of natural petal evolution, which could be used for further taxonomic and evolutionary studies. The reason for the variation and the taxonomic treatment of the species still need further study.  相似文献   

13.
Eucalypt MADS-Box Genes Expressed in Developing Flowers   总被引:10,自引:0,他引:10       下载免费PDF全文
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.  相似文献   

14.
Attractive petals are an integral component of animal-pollinated flowers and in many flowering plant species are restricted to the second floral whorl. Interestingly, multiple times during angiosperm evolution, petaloid characteristics have expanded to adjacent floral whorls or to extra-floral organs. Here, we investigate developmental characteristics of petaloid sepals in Rhodochiton atrosanguineum, a close relative of the model species Antirrhinum majus (snapdragon). We undertook this in two ways, first using scanning electron microscopy we investigate the micromorphology of petals and sepals, followed by expression studies of genes usually responsible for the formation of petaloid structures. From our data, we conclude that R. atrosanguineum petaloid sepals lack micromorphological characteristics of petals and that petaloid sepals did not evolve through regulatory evolution of B-class MADS box genes, which have been shown to specify second whorl petal identity in a number of model flowering plant species including snapdragon. These data, in conjunction with other studies, suggests multiple convergent pathways for the evolution of showy sepals.  相似文献   

15.
Floral color changes are common among Melastomataceae and have been interpreted as a warning mechanism for bees to avoid old flowers, albeit increasing long-distance flower display. Here the reproductive systems of Tibouchina pulchra and T. sellowiana were investigated by controlled pollinations. Their pollinators were identified, and experiments on floral color and fragrance changes were conduced to verify if those changes affect the floral visitation. Both Tibouchina species are self compatible. The flowers lasted three days or more, and the floral color changed from white in the 1st day to pink in the following days. Pollen deposition on stigma induced floral color change. The effectiveness of the pollination is dependent on bees’ size; only large bees were regarded as effective pollinators. In experimental tests, the bees in T. pulchra preferred the natural white flowers while the visitors of T. sellowiana were attracted by both natural and mimetic 1st-day flowers (2nd-day flowers with experimentally attached 1st-day flower petals). During the experiments on floral fragrance, the bees visited both natural and mimetic 1st-day flowers (2nd-day flowers with 1st-day flower scents). In both experiments, the bees avoided natural 2nd-day flowers, but seldom visited modified 2nd-day flowers. The attractiveness of T. pulchra and T. sellowiana flowers cannot be attributed exclusively to the color or the fragrance separately, both factors seemingly act together.  相似文献   

16.
The genus Clusia L. is highly variable in many floral features. Several Clusia species have floral organs of mixed or uncertain identity, such as organs that are transitional between bracteoles and sepals, petaloid sepals, and partly petaloid stamen rings. Unique in Clusia is the "corona" of Clusia gundlachii Stahl, a thick, urn-shaped structure that is initiated as a ring primordium. In male flowers it surrounds a synandrium, and in female flowers it surrounds the ovary and a row of staminodes. The corona combines features typical of both petals and stamens of other Clusia species. It is hypothesized that this corona may be the result of the altered expression patterns of the genes that determine floral organ identity. Clusia gundlachii has many floral features in common with two small genera that are sometimes included in Clusia: Havetiopsis and Oedematopus. These genera have four thick connivent petals. Their apparent close relationship makes it seem likely that the corona of C. gundlachii evolved via congenital fusion of such petals. The corona is also somewhat similar to the staminodial rings present in many Clusia species, but taxa in which such organs occur show little similarity to C. gundlachii in terms of other floral characters.  相似文献   

17.
In Freycinetia reineckei the staminate flower (on the staminate spikes) comprises 3 or 4 (sometimes 2) stamens and a pistillode with 2 (sometimes 4) carpellodes, and the pistillate flower (on the pistillate spikes) is formed of a pistil with 2 (sometimes 4) carpels and of 3 or 4 (sometimes 2) staminodes. This perfect floral homology, also observed in all the other species that were studied with both pistillate and staminate material, strongly suggests that the flower of Freycinetia is basically and potentially bisexual, and may explain the occasional sexual lability and bisexuality of that flower (occurrence of both pistillate and staminate inflorescences, and/or of bisexual inflorescences with bisexual flowers and/or unisexual flowers, on the same individuals) in some species, and also the frequent occurrence of bisexual spikes in this species. These may be partitioned into pistillate, staminate, mixed and sterile zones. In the pistillate zones the flowers have the same aspect and structure as the pistillate flowers. In the staminate zones the flowers generally comprise 3 or 4 (sometimes 2) stamens and a ‘semi-pistil’ some have both stamens and staminodes. The semi-pistils are intermediate between pistils and pistillodes in length, aspect and structure, but always have placentas and ovules. In the mixed zones the flowers are generally formed of a pistil and 3 or 4 (sometimes 2) stamens, and are therefore true hermaphrodite flowers; some have both stamens and staminodes. In the sterile zones the flowers comprise a semi-pistil and 3 or 4 (sometimes 2) staminodes. The staminodes are anatomically very similar to the stamens, especially in the staminate, mixed, and sterile zones, in which they exhibit a wide range of variation in length, aspect and structure. The perfect floral homology as generic character on one hand, and the occasional bisexuality both with and without bisexual flowers and other aspects of sex expression (e.g. occurrence of both pistillate and staminate shoots on the same individuals) in some species on the other hand, seem to indicate that Freycinetia is a basically monoecious, sex changing genus.  相似文献   

18.
BACKGROUND AND AIMS: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. METHODS: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. KEY RESULTS: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. CONCLUSIONS: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae.  相似文献   

19.
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedtia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bracteoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower.  相似文献   

20.

Background and Aims

The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana.

Methods

An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition.

Key Results and Conclusions

It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号