首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, distribution of polysaccharides, lipids, and proteins in the developing anthers of Campsis radicans (L.) Seem. was examined from sporogenous cell stage to mature pollen, using cytochemical methods. To detect the distribution and dynamic changes of insoluble polysaccharides, lipid bodies, and proteins in the anthers through progressive developmental stages, semi-thin sections of anthers at different developmental stages were stained with periodic-acid-Schiff (PAS) reagent, Sudan black B, and Coomassie brilliant blue, respectively, and examined under light microscope. Ultrastructural observations with TEM were also carried out to determine the storage form of starch in the connective tissue, and storage form of lipids in the tapetal cells. In sporogenous cell stage, anther wall contains numerous insoluble polysaccharides. However, from the sporogenous cell stage to the vacuolated microspore stage, the amount of insoluble polysaccharides in the anther wall decreases gradually. At bicellular pollen stage, tapetum degenerates completely and polysaccharides are not seen in the anther wall. Lipid bodies are observed in the cytoplasm of both middle layer and tapetal cells at tetrad stage, whereas they disappear in the vacuolated microspore stage. Compared with polysaccharides, proteins are limited in the anther wall at early stages of development. During pollen development, polysaccharides, proteins, and lipid bodies are scarce in the cytoplasm of sporogenous cells, but their amount increases at premeiotic stage. From tetrad stage to bicellular pollen stage, microspore cytoplasm contains variable amount of insoluble polysaccharide grains, lipid and protein bodies. At bicellular pollen stage, plentiful amount of starch granules are stored in the cytoplasm of the pollen grains. Proteins and lipid bodies are also present in the cytoplasm.  相似文献   

2.
Brachypodium distachyon is a widely recognized model plant belonging to subfamily Pooideae with a sequenced genome. To gain a better understanding of the male reproductive development in B. distachyon we examined pollen morphology and cytochemical changes of microspore cytoplasm from pollen mother cell stage to mature pollen using light, fluorescent and scanning electron microscopy. Our results show that B. distachyon exhibits a typical monocot-type pollen ontogeny. Meiosis in the pollen mother cells is accomplished by successive cytokinesis generating isobilateral tetrads. Cytochemical examination indicated that microspore cytoplasm contains variable amounts of insoluble carbohydrates and proteins at different developmental stages. Deposition of starch in the cytoplasm of microspores starts at the bicellular stage and continues till the mature pollen stage. The formation of the exine wall progresses by the deposition of sporopollenin from the tapetum layer of the anther. The mature pollen is trinucleate, spheroidal in shape and possesses a single pore with an annulus and operculum. The exine pattern is smooth and of granular type.  相似文献   

3.
The development of pollen grains and tapetum in Mitriostigma axillare (Rubiaceae) was studied from anther primordium to dehiscence. Anthers were freeze-cracked and studied with SEM. Embedded anthers were sectioned and studied with LM and TEM. Cytochemistry was performed in order to distinguish the different layers of the sporoderm and to determine its chemical nature at different development stages. The pollen grains remained as tetrads by partial fusion of the exine, probably because of reduced callose septa during the stage of microspore tetrads within callose envelopes. Characteristic features of the sporoderm were an irregular foot layer, an endexine composed of amalgamated granules, a transient granular-fibrous layer beneath the endexine, and a thin intine. During maturation of the exine, the endexine became chemically different from the ectexine. All layers of the sporoderm were reduced in thickness due to stretching during the engorgement of the pollen grains prior to dehiscence. The pollen grains were colpoidorate with a reticulate to microreticulate tectum covered with a scanty surface coating. The mature pollen grains were binucleate and contained a lot of starch grains. Thick intineous onci protruded through the apertures and formed papillae. About 50% of the microspores were aborted. The tapetum was of secretory type, probably with cycles of hyperactivity and protrusions of the cells into the locular cavity. No syncytium was formed and there were neither orbicules nor tapetal membrane.  相似文献   

4.
After detailing the exine ontogeny, our purpose was to find out whether the sequence of sporoderm developmental events corresponds to self-assembling micellar mesophases, initiated by genomically determined physicochemical parameters and induced by surfactant glycoproteins at increasing concentrations. Indeed, a scaffolding of the future exine, i.e., the glycocalyx, initiates with scattered clots, which then appear as clusters of spherical and worm-like micelles, derived from surface-active glycoproteins. At the middle tetrad stage, a continuous layer of the glycocalyx emerges, consisting of parallel, tightly packed cylinder-like units, which we interpret as a layer of cylindrical micelles, the so-called middle mesophase. These units bear dark-contrasted particles, arranged in strings or columns. These sites of the glycocalyx units?Cmicelles accumulate initial sporopollenin, hence the term ??sporopollenin acceptor particles?? (SAPs). This process leads to the appearance of procolumellae at the late tetrad stage. The glycocalyx units are rooted into callose and into the microspore cytoplasm. After formation of the tectum and the foot layer, the endexine initiates as a thin layer, and the latter develops into a very thick layer in the post-tetrad period. When callose disintegrates, ??bouquets?? of SAPs become evident on the tectum, which were evidently hidden inside the callose layer; these structures self-assemble into supratectal gemmae. An unusual, ??hybrid?? type of tapetum was observed. What is observed in Symphytum exine development allows us to obtain more evidence for the hypothesis of the participation of micellar self-assembly in sporoderm development and to bring together the concepts of micelles and of SAPs.  相似文献   

5.
Pollen wall development of Sciadopitys verticillata was observed by transmission electron microscopy. The pollen of S. verticillata is non-saccate and spherical, and the exine consists of the outer thick, sculptured ectexine and the inner lamellated endexine. At the early tetrad stage, the initial ectexine and lamellae of the initial endexine begin to form on the microspore plasma membrane. The ectexine granules gradually swell. Deposition of sporopollenin materials on the ectexine granules then results it their becoming partially connected to each other. Identification of the original small ectexine granules then becomes difficult, and, finally, the ectexine appears as a homogeneous, partially discontinuous layer. The granules of the early ectexine cannot be identified. At maturity, there are four to five endexine lamellae. Recent molecular data have shown that Sciadopitys first branches off from the Cupressaceae plus Taxaceae clade, which is characterized by granular exine. Although the ectexine of Sciadopitys is similar to that of the Cupressaceae during initial development, the morphology of the ectexine is significantly different in the mature pollen. The initial stage of pollen development clearly shows the structural homology of the granular ectexine. Divergence of the exine structure occurs in the later stages.  相似文献   

6.
In discussions of exine structural types, Tsuga is often mentioned as an exception, since no infratectal layer is present in the ektexine. The present investigation documents the formation of this pollen wall type at the ultrastructural level in T. canadensis . All layers of the exine are formed during the tetrad period, when the microspores are surrounded by a callose wall. The outer layer (ektexine) is elaborated on a fibrillar microspore surface coat, while the inner layer (endexine) is elaborated on lamellated structures. The deposition of the pretectum is followed by the appearance of endexine lamellae. In the initial stages, the two layers—pretectum and endexine—appear to be separated from each other only by a dense microspore surface coat. As additional wall materials are deposited, the tectal elements become convoluted and come to rest, in places, on the now recognizable footlayer. Upon release from the tetrad, intine formation begins and continuous accumulation of sporopollenin leads to an increase in ektexine thickness. The mature pollen wall of Tsuga canadensis , with a convoluted tectum resting directly on the footlayer, is characteristic of the genus.  相似文献   

7.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

8.
Svetlana Polevova 《Grana》2013,52(5):337-349
Pollen ontogeny and sporoderm development in Aristolochia manshuriensis were studied for elaboration of the inaperturete pollen ontogeny in Aristolochia. Despite the formation of apertures in the tetrad period, the sporoderm in A. manshuriensis becomes inaperturate at the end of the free microspore period. A similar immature exine is also detected in A. macrophylla. Variants of aperture formation in the tetrad period in A. manshuriensis or formation of a polar aperture in the free microspore period in A. clematitis are associated with types of microsporogenesis. The ectexine and endexine in A. manshuriensis are formed over a longer time and reached much greater thickness than those in A. clematitis. The endexine and intine in A. manshuriensis do not reach a mature state, similar to A. clematitis. The exine of A. manshuriensis cracks, releasing a pollen tube enveloped by the intine. This fact does not hinder the functioning of the male gametophyte of A. manshuriensis.  相似文献   

9.
The developmental events in the sporoderm and the cytoplasm of Liriodendron chinense microspore from the early tetrad stage until late free microspore stage were observed. Various forms of the endoplasmic reticulum (ER) and surprising unusual aggregates of ER seen during microspore development attract special attention. Being scanty at early and middle tetrad stage, while primexine matrix (glycocalyx) acquires well-defined form, the ER becomes distinct in unusual forms at the late tetrad stage. Thin long tubules with an osmiophilic contents, which cannot be compared with the tubular smooth endoplasmic reticulum (SER), undulate through the cytoplasm. Towards the end of the tetrad period when callose begins to disintegrate, and a distinct tectate-columellate pattern of the ectexine becomes evident, two new forms of the SER occur in the cytoplasm. Instead of single tubules observed previously, 3–tubuled aggregates meander through the cytoplasm, the middle tubule contains an osmiophilic substance. The second form of the SER looks like an ordinary tubular SER, but has ampoule-like dilations with dark granular contents. Later on the tubules undergo major changes: multi-tubuled aggregates of parallel tubules overcrowd the cytoplasm, the outer tubules of each aggregate carrying ribosomes. These aggregates undulate through the cytoplasm, branch, and are associated with lipid globules. The tips of many aggregates are pressed to the plasmalemma. The ontogenetic period of time of the presence of these ER aggregates, their structure and localization in the microspore cytoplasm allow me to assume that these ER aggregates synthesize sporopollenin precursors.  相似文献   

10.
Brasenia is a monotypic genus sporadically distributed throughout the Americas, Asia, Australia, and Africa. It is one of eight genera that comprise the two families of Nymphaeales, or water lilies: Cabombaceae (Brasenia, Cabomba) and Nymphaeaceae (Victoria, Euryale, Nymphaea, Ondinea, Barclaya, Nuphar). Evidence from a range of studies indicates that Nymphaeales are among the most primitive angiosperms. Despite their phylogenetic utility, pollen developmental characters are not well known in Brasenia. This paper is the first to describe the complete pollen developmental sequence in Brasenia schreberi. Anthers at the microspore mother cell, tetrad, free microspore, and mature pollen grain stages were studied using combined scanning electron, transmission electron, and light microscopy. Both tetragonal and decussate tetrads have been identified in Brasenia, indicating successive microsporogenesis. The exine is tectate-columellate. The tetrad stage proceeds rapidly, and the infratectal columellae are the first exine elements to form. Development of the tectum and the foot layer is initiated later during the tetrad stage, with the tectum forming discontinuously. The endexine lamellae form during the free microspore stage, and their development varies in the apertural and non-apertural regions of the pollen wall. Degradation of the secretory tapetum also occurs during the free microspore stage. Unlike other water lilies, Brasenia is wind-pollinated, and several pollen characters appear to be correlated with this pollination syndrome. The adaptive significance of these characters, in contrast to those of the fly-pollinated genus Cabomba, has been considered. Brasenia does not produce pollenkitt nor develop tectal microchannels as does Cabomba. Instead, the discontinuity of the tectum reduces the amount of sporopollenin in the wall, which may allow for more effective wind dispersal. The importance of reassessing palynological characters in light of new ontogenetic data and the phylogenetic implications of this reevaluation are also discussed.  相似文献   

11.
For the first time, the developmental events in the course of exine structure establishment have been traced in detail with TEM in Eupomatia, with the addition of cytochemical tests. A new look at unfolding events is suggested using our recent hypothesis on self-assembling micellar mesophases. The process proved to be unusual and includes “ghost” stages. The first units observed in the periplasmic space are spherical ones (= normal spherical micelles). These accumulate, resulting in a granular layer up to middle tetrad stage. Sporopollenin precursor accumulation on these units makes the ectexine layer looking as homogenous at late tetrad stage. Simultaneously, the columns of globules are added in the periplasmic space, which reminds an attempt to form columellae; but, the process failed. Instead, a fimbrillate endexine layer of compressed globules appears. The latter augments via additional globules, appearing in the periplasmic space in the free microspore period. The endexine formation is double-stepped spatially and temporally. The second, lamellate endexine layer (laminate micelles) appears late in development, when the channeled intine-I is already established—a very unusual feature. Moreover, a “fenestrated” stage comes unexpectedly at vacuolate stage, when hitherto amorphous ectexine appears pierced by cavernae—the results of reversal of normal spherical micelles (constituents of ectexine) to reverse the ones that open their cores for the entrance of hydrophilic nutrients from tapetum and give them over to the microspore cytoplasm by exchanging their solubilizates.  相似文献   

12.
By a detailed ontogenetic study of Polemonium caeruleum pollen, tracing each stage of development at high TEM resolution, we aim to understand the establishment of the pollen wall and to unravel the mechanisms underlying sporoderm development. The main steps of exine ontogeny in Polemonium caeruleum, observed in the microspore periplasmic space, are spherical units, gradually transforming into columns, then to rod-like units (procolumellae), the appearance of the initial tectum, growth of columellae in height and tectum in thickness and initial sporopollenin accumulation on them, the appearance of the endexine lamellae and of dark-contrasted particles on the tectum, the appearance of a sponge-like layer and of the intine in aperture sites, the appearance of the foot layer on the base of the sponge-like layer and of spinules on the tectum, and massive sporopollenin accumulation. This sequence of developmental events fits well to the sequence of self-assembling micellar mesophases. This gives (together with earlier findings and experimental exine simulations) strong evidence that genome and self-assembly probably share control of exine formation. It is highly probable that self-assembly is an intrinsic instrument of evolution.  相似文献   

13.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

14.

Background and Aims

The phenomenon of self-assembly, widespread in both the living and the non-living world, is a key mechanism in sporoderm pattern formation. Observations in developmental palynology appear in a new light if they are regarded as aspects of a sequence of micellar colloidal mesophases at genomically controlled initial parameters. The exine of Persea is reduced to ornamentaion (spines and gemmae with underlying skin-like ectexine); there is no endexine. Development of Persea exine was analysed based on the idea that ornamentation of pollen occurs largely by self-assembly.

Methods

Flower buds were collected from trees grown in greenhouses over 11 years in order to examine all the main developmental stages, including the very short tetrad period. After fixing, sections were examined using transmission electron microscopy.

Key Results and Conclusions

The locations of future spines are determined by lipid droplets in invaginations of the microspore plasma membrane. The addition of new sporopollenin monomers into these invaginations leads to the appearance of chimeric polymersomes, which, after splitting into two individual assemblies, give rise to both liquid-crystal conical ‘skeletons’ of spines and spherical micelles. After autopolymerization of sporopollenin, spines emerge around their skeletons, nested into clusters of globules. These clusters and single globules between spines appear on a base of spherical micelles. The intine also develops on the base of micellar mesophases. Colloidal chemistry helps to provide a more general understanding of the processes and explains recurrent features of pollen walls from remote taxa.  相似文献   

15.
The pollen grains of Heliotropium europaeum are heterocolpate, with alternation of 3 colpori and 3 pseudocolpi. The exine is characterized by a scabrate and thick tectum, massive columellae with a granular appearance and a thick nexine. The thickening of the intine at the apertural level makes the interpretation of this zone difficult. The ontogenetic study helped to understand the ultrastructure of the exine and the apertures. The different steps are as follows. The primexine matrix is formed during the beginning of the tetrad stage; it consists of an outer thick and electron dense zone and an inner one, less dense to electrons. The tectum and the infratectum begin to form in the outer zone of the matrix, towards the middle of the tetrad stage. The infratectum consists of a network of columellae variable in thickness and oriented in different directions. The foot layer is lacking. The endexine is formed on a lamella system during the callose loss and microspore separation. The endexine becomes compact very early on its inner part. The apertures are initiated during the tetrad stage; a granulo-fibrillar oncus develops. At the free microspore stage, the oncus gets fibrillar and is bordered by endexine lamellae on its outer side and by endexine granulations on its inner one and laterally. The intine is set at the end of this stage. At the vacuolated microspore stage, the intine shows three layers: two thin, clear and homogeneous layers, one outside and the other inside, and a thick middle layer that forms the zwischenkörper, crossed by trabecula, in the apertural areas.  相似文献   

16.
Formation of the unique and highly diverse outer cell wall, or exine, of pollen is essential for normal pollen function and survival. However, little is known about the many contributing proteins and processes involved in the formation of this wall. The tomato gene LeGRP92 encodes for a glycine-rich protein produced specifically in the tapetum. LeGRP92 is found as four major forms that accumulate differentially in protein extracts from stamens at different developmental stages. The three largest molecular weight forms accumulated during early microspore development, while the smallest molecular weight form of LeGRP92 was present in protein extracts from stamens from early microsporogenesis through anther dehiscence, and was the only form present in dehisced pollen. Light microscopy immunolocalization experiments detected LeGRP92 at only two stages, late tetrad and early free microspore. However, we observed accumulation of the LeGRP92 at the early tetrad stage of development by removing the callose wall from tetrads, which allowed LeGRP92 detection. Transmission electron microscopy confirmed the LeGRP92 accumulation from microspore mother cells, tetrads through anther dehiscence. It was observed in the callose surrounding the microspore mother cells and tetrads, the exine of microspores and mature pollen, and orbicules. Plants expressing antisense RNA had reduced levels of LeGRP92 mRNA and protein, which correlated to pollen with altered exine formation and reduced pollen viability and germination. These data suggest that the LeGRP92 has a role in facilitating sporopollenin deposition and uniform exine formation and pollen viability.  相似文献   

17.
Coverage is of microspore tetrad period from end of cytokinesis to introduction of endexine in Pinus sylvestris. The ectexine of aperture, cap zone and sacci and the endexine are initiated while microspores are in the tetrad condition and enveloped in callose. Ectexine patterning including considerable expansion of sacci develops prior to the initiation of the endexine. Alveoli, sacci and alveoli within sacci are initiated by cytoplasmic invaginations which are sites of uptake of cell surface coat (glycocalyx) along with nutrients bound to the glycocalyx. Applications of tracers show that glycocalyx elements bind to cations and transport them to the cytoplasm. From the beginning of exine formation these invaginations are largest in the regions of future sacci and very small in the aperture. As growth progresses cytoplasm surrounding invaginations partially retracts, but callose contact is retained. Thus, these invaginations become callose covered hemispheroids (alveoli) that are “open” to the cell surface proximally and covered by callose distally but only partially so at the sides of the “cup‐shaped” alveoli. Until introduction of the endexine part of the alveolar‐sides are made up of cytoplasmic protrusions which contact the callose protrusions, even across sacci expanded more than 3 μm. Glycocalyx elements become aligned on the inner surface of the callosic alveoli and are sites for sporopollenin accumulation. The template for endexine components consists of glycocalyx elements that become aligned near the plasma membrane. Our observations indicate that uptake from the loculus to the microspore cytoplasm changes after introduction of the endexine. Henceforth, uptake is assisted by the endexine, as shown by tracers. Tapetal cells undergo two periods of hyperactivity during the period covered. Hyperactivity took place at the beginning of uptake by microspores and during endexine formation. The extra tapetal lamellation and its tapetal markers begin to exhibit the intense staining, after endexine initiation.  相似文献   

18.
Accumulation of sporopollenin components in microspore wall, its polymerization dynamics and possible participation of reactive oxygen species (ROS) in this process has been studied. For this purpose fluorescent and electron microscopy (TEM) was used. It has been determined that phenylpropanoid components of sporopollenin that form the exine accumulate in the microspore cell wall at the middle and late tetrad stages. At the late tetrad stage, they fully cover the microspore surface and accumulate abundantly in aperture areas. In accordance with this, numerous thick sporopollenin lamellae, electron-dense and acetolysis-resistant, emerge in aperture areas. Exine in the areas between apertures includes both acetolysis-resistant sporopollenin and washout components. These particular parts of the wall are intensively stained with fluorescent dye MitoSOX, which detects the presence of ROS. The staining disappeared after the treatment of microspore with superoxide dismutase, demonstrating the presence of superoxide in the exine. Superoxide easily converts to hydrogen peroxide, which can cause oxidative polymerization of sporopollenin components, leading to the formation of chemically stable biopolymer. The data obtained favor the hypothesis of ROS involvement in the formation of sporopollenin.  相似文献   

19.
利用薄层胶电泳技术对玉米花粉形成过程不同阶段的酯酶同工酶及可溶性蛋白种类和含量变化进行了研究。结果表明在玉米花粉形成过程中的不同阶段酯酶同工酶的种类和活性均有不同。四分体时期出现两种小分子量酯酶同工酶到小孢子阶段即很快消失,早期小孢子阶段酯酶同工活性及种类达到高峰,以后则逐步递减。玉米花粉可溶性蛋白电泳显示玉米花粉形成过程中不同发育时期蛋白类和含量有很大变化。四分体时期存在有特异性蛋白(TP),它  相似文献   

20.
Structure of mature pollen of Myosotis scorpioides and sporoderm development were examined using light, scanning and transmission electron microscopy. Pollen grains of M. scorpioides are heterocolpate with three colpori alternating with three pseudocolpi (pseudoapertures). Functional pseudoapertures take part in harmomegathy but not in pollen germination. Formation of colpori and pseudocolpi starts simultaneously. Structural difference between the aperture and pseudoaperture becomes clearly noticeable at the early free microspore stage when the endexine is initiated: at the colpori (at the area of ora) the endexine is composed of only a thin loose layer, at the pseudocolpi, the endexine is homogeneous and thick. Later, on the late free microspore stage, the difference appears in the structure of the intine: at the area of ora, the intine is three times thicker comparing with the pseudoapertures and mesocolpia. Besides zonal pseudoapertures, the triangular poroid areas are present at both poles of M. scorpioides pollen. Their structure and developmental pathway are similar to the zonal pseudoapertures. Pseudocolpi and polar pseudoapertures should be considered as the structures originated de novo specialised for harmomegathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号