首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

3.
We investigated the effect of carbohydrate (CHO) ingestion before and during exercise and in combination on glucose kinetics, metabolism and performance in seven trained men, who cycled for 120 min (SS) at approximately 63% of peak power output, followed by a 7 kJ/kg body wt time trial (TT). On four separate occasions, subjects received either a placebo beverage before and during SS (PP); placebo 30 min before and 2 g/kg body wt of CHO in a 6.4% CHO solution throughout SS (PC); 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and placebo throughout SS (CP); or 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and 2 g/kg of CHO in a 6.4% CHO solution throughout SS (CC). Ingestion of CC and CP markedly (>8 mM) increased plasma glucose concentration ([glucose]) compared with PP and PC (5 mM). However, plasma [glucose] fell rapidly at the onset of SS so that after 80 min it was similar (6 mM) between all treatments. After this time, plasma [glucose] declined in both PP and CP (P < 0.05) but was well maintained in both CC and PC. Ingestion of CC and CP increased rates of glucose appearance (R(a)) and disappearance (R(d)) compared with PP and PC at the onset of, and early during, SS (P < 0.05). However, late in SS, both glucose R(a) and R(d) were higher in CC and PC compared with other trials (P < 0.05). Although calculated rates of glucose oxidation were different when comparing the four trials (P < 0.05), total CHO oxidation and total fat oxidation were similar. Despite this, TT was improved in CC and PC compared with PP (P < 0.05). We conclude that 1) preexercise ingestion of CHO improves performance only when CHO ingestion is maintained throughout exercise, and 2) ingestion of CHO during 120 min of cycling improves subsequent TT performance.  相似文献   

4.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

5.
The present study was undertaken to examine the effect of carbohydrate ingestion on plasma and muscle ammonia (NH(3) denotes ammonia and ammonium) accumulation during prolonged exercise. Eleven trained men exercised for 2 h at 65% peak pulmonary oxygen consumption while ingesting either 250 ml of an 8% carbohydrate-electrolyte solution every 15 min (CHO) or an equal volume of a sweet placebo. Blood glucose and plasma insulin levels during exercise were higher in CHO, but plasma hypoxanthine was lower after 120 min (1.7 +/- 0.3 vs. 2.6 +/- 0.1 micromol/l; P < 0. 05). Plasma NH(3) levels were similar at rest and after 30 min of exercise in both trials but were lower after 60, 90, and 120 min of exercise in CHO (62 +/- 9 vs. 76 +/- 9 micromol/l; P < 0.05). Muscle NH(3) levels were similar at rest and after 30 min of exercise but were lower after 120 min of exercise in CHO (1.51 +/- 0.21 vs. 2.07 +/- 0.23 mmol/kg dry muscle; P < 0.05; n = 5). These data are best explained by carbohydrate ingestion reducing muscle NH(3) production from amino acid degradation, although a small reduction in net AMP catabolism within the contracting muscle may also make a minor contribution to the lower tissue NH(3) levels.  相似文献   

6.
7.
8.
To test the effects of tyrosine ingestion with or without carbohydrate supplementation on endurance performance, nine competitive cyclists cycled at 70% peak oxygen uptake for 90 min under four different feeding conditions followed immediately by a time trial. At 30-min intervals, beginning 60 min before exercise, each subject consumed either 5 ml/kg body wt of water sweetened with aspartame [placebo (Pla)], polydextrose (70 g/l) (CHO), L-tyrosine (25 mg/kg body wt) (Tyr), or polydextrose (70 g/l) and L-tyrosine (25 mg/kg body wt) (CHO+Tyr). The experimental trials were given in random order and were carried out by using a counterbalanced double-blind design. No differences were found between treatments for oxygen uptake, heart rate, or rating of perceived exertion at any time during the 90-min ride. Plasma tyrosine rose significantly from 60 min before exercise to test termination (TT) in Tyr (means +/- SE) (480 +/- 26 micromol) and CHO+Tyr (463 +/- 34 micromol) and was significantly higher in these groups from 30 min before exercise to TT vs. CHO (90 +/- 3 micromol) and Pla (111 +/- 7 micromol) (P < 0.05). Plasma free tryptophan was higher after 90 min of exercise, 15 min into the endurance time trial, and at TT in Tyr (10.1 +/- 0.9, 10.4 +/- 0.8, and 12.0 +/- 0.9 micromol, respectively) and Pla (9.7 +/- 0.5, 10.0 +/- 0.3, and 11.7 +/- 0.5 micromol, respectively) vs. CHO (7.8 +/- 0.5, 8.6 +/- 0.5, and 9.3 +/- 0.6 micromol, respectively) and CHO+Tyr (7.8 +/- 0.5, 8.5 +/- 0.5, 9.4 +/- 0.5 micromol, respectively) (P < 0.05). The plasma tyrosine-to-free tryptophan ratio was significantly higher in Tyr and CHO+Tyr vs. CHO and Pla from 30 min before exercise to TT (P < 0.05). CHO (27.1 +/- 0.9 min) and CHO+Tyr (26.1 +/- 1.1 min) treatments resulted in a reduced time to complete the endurance time trial compared with Pla (34.4 +/- 2.9 min) and Tyr (32.6 +/- 3.0 min) (P < 0.05). These findings demonstrate that tyrosine ingestion did not enhance performance during a cycling time trial after 90 min of steady-state exercise.  相似文献   

9.
This review examines the mechanisms that regulate muscle carbohydrate metabolism during exercise. Muscle carbohydrate utilization is regulated primarily by two factors, namely, delivery of substrate to the glycolytic pathway either from glycogenolysis or from transport of extracellular glucose into the fibers, and formation of triosephosphate by phosphofructokinase. The regulation involves the integration of the glycolytic controls with other metabolic controls and the needs of the whole muscle in meeting the physiological demand. The controls operating in the glycolytic sequence in vivo appear to couple glycolytic recruitment to signals from the rate of energy demand, the TCA cycle state, and the mitochondrial redox state so as to satisfy the major regulatory goal of maintaining the supply of ATP for tension development.  相似文献   

10.
We tested the theory that links the capacity to perform prolonged exercise with the size of the muscle tricarboxylic acid (TCA) cycle intermediate (TCAI) pool. We hypothesized that endurance training would attenuate the exercise-induced increase in TCAI concentration ([TCAI]); however, the lower [TCAI] would not compromise cycle endurance capacity. Eight men (22 +/- 1 yr) cycled at approximately 80% of initial peak oxygen uptake before and after 7 wk of training (1 h/day, 5 days/wk). Biopsies (vastus lateralis) were obtained during both trials at rest, after 5 min, and at the point of exhaustion during the pretraining trial (42 +/- 6 min). A biopsy was also obtained at the end of exercise during the posttraining trial (91 +/- 6 min). In addition to improved performance, training increased (P < 0.05) peak oxygen uptake and citrate synthase maximal activity. The sum of four measured TCAI was similar between trials at rest but lower after 5 min of exercise posttraining [2.7 +/- 0.2 vs. 4.3 +/- 0.2 mmol/kg dry wt (P < 0.05)]. There was a clear dissociation between [TCAI] and endurance capacity because the [TCAI] at the point of exhaustion during the pretraining trial was not different between trials (posttraining: 2.9 +/- 0.2 vs. pretraining: 3.5 +/- 0.2 mmol/kg dry wt), and yet cycle endurance time more than doubled in the posttraining trial. Training also attenuated the exercise-induced decrease in glutamate concentration (posttraining: 4.5 +/- 0.7 vs. pretraining: 7.7 +/- 0.6 mmol/kg dry wt) and increase in alanine concentration (posttraining: 3.3 +/- 0.2 vs. pretraining: 5.6 +/- 0.3 mmol/kg dry wt; P < 0.05), which is consistent with reduced carbon flux through alanine aminotransferase. We conclude that, after aerobic training, cycle endurance capacity is not limited by a decrease in muscle [TCAI].  相似文献   

11.
The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 +/- 20 vs. 42 +/- 16 g/h; P < 0.01) and cycling (57 +/- 16 vs. 35 +/- 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 +/- 4 vs. 23 +/- 3%; P < 0.01) and cycling (36 +/- 5 vs. 22 +/- 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 +/- 32 vs. 141 +/- 34 mmol/kg dry mass) or cycling (227 +/- 36 vs. 216 +/- 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.  相似文献   

12.
13.
14.
15.
This two-part investigation compared the ergogenic and metabolic effects of theophylline and caffeine. Initially (part A), the ergogenic potential of theophylline on endurance exercise was investigated. Eight men cycled at 80% maximum O(2) consumption to exhaustion 90 min after ingesting either placebo (dextrose), caffeine (6 mg/kg; Caff), or theophylline (4.5 mg/kg Theolair; Theo). There was a significant increase in time to exhaustion in both the Caff (41.2+/-4.8 min) and Theo (37.4+/-5.0 min) trials compared with placebo (32.6+/-3.4 min) (P<0.05). In part B, the effects of Theo on muscle metabolism were investigated and compared with Caff. Seven men cycled for 45 min at 70% maximum O(2) consumption (identical treatment protocol as in part A). Neither methylxanthines (MX) affected muscle glycogen utilization (P>0.05). Only Caff increased plasma epinephrine (P<0.05), but both MX increased blood glycerol levels (P<0.05). Muscle cAMP was increased (P<0.05) by both MX at 15 min and remained elevated at 45 min with Theo. This demonstrates that both MX are ergogenic and that this can be independent of muscle glycogen.  相似文献   

16.
Substrate utilization after fructose, glucose, or water ingestion was examined in four male and four female subjects during three treadmill runs at approximately 75% of maximal O2 uptake. Each test was preceded by three days of a carbohydrate-rich diet. The runs were 30 min long and were spaced at least 1 wk apart. Exercise began 45 min after ingestion of 300 ml of randomly assigned 75 g fructose (F), 75 g glucose (G), or control (C). Muscle glycogen depletion determined by pre- and postexercise biopsies (gastrocnemius muscle) was significantly (P less than 0.05) less during the F trial than during C or G. Venous blood samples revealed a significant increase in serum glucose (P less than 0.05) and insulin (P less than 0.01) within 45 min after the G drink, followed by a decrease (P less than 0.05) in serum glucose during the first 15 min of exercise, changes not observed in the C or F trials. Respiratory exchange ratio was higher (P less than 0.05) during the G than C or F trials for the first 5 min of exercise and lower (P less than 0.05) during the C trial compared with G or F for the last 15 min of exercise. These data suggest that fructose ingested before 30 min of submaximal exercise maintains stable blood glucose and insulin concentrations, which may lead to the observed sparing of muscle glycogen.  相似文献   

17.
18.
This study compared the effects of inspiring either a hyperoxic (60% O(2)) or normoxic gas (21% O(2)) while cycling at 70% peak O(2) uptake on 1) the ATP derived from substrate phosphorylation during the initial minute of exercise, as estimated from phosphocreatine degradation and lactate accumulation, and 2) the reliance on carbohydrate utilization and oxidation during steady-state cycling, as estimated from net muscle glycogen use and the activity of pyruvate dehydrogenase (PDH) in the active form (PDH(a)), respectively. We hypothesized that 60% O(2) would decrease substrate phosphorylation at the onset of exercise and that it would not affect steady-state exercise PDH activity, and therefore muscle carbohydrate oxidation would be unaltered. Ten active male subjects cycled for 15 min on two occasions while inspiring 21% or 60% O(2), balance N(2). Blood was obtained throughout and skeletal muscle biopsies were sampled at rest and 1 and 15 min of exercise in each trial. The ATP derived from substrate-level phosphorylation during the initial minute of exercise was unaffected by hyperoxia (21%: 52.2 +/- 11.1; 60%: 54.0 +/- 9.5 mmol ATP/kg dry wt). Net glycogen breakdown during 15 min of cycling was reduced during the 60% O(2) trial vs. 21% O(2) (192.7 +/- 25.3 vs. 138.6 +/- 16.8 mmol glycosyl units/kg dry wt). Hyperoxia had no effect on PDH(a), because it was similar to the 21% O(2) trial at rest and during exercise (21%: 2.20 +/- 0.26; 60%: 2.25 +/- 0.30 mmol.kg wet wt(-1).min(-1)). Blood lactate was lower (6.4 +/- 1.0 vs. 8.9 +/- 1.0 mM) at 15 min of exercise and net muscle lactate accumulation was reduced from 1 to 15 min of exercise in the 60% O(2) trial compared with 21% (8.6 +/- 5.1 vs. 27.3 +/- 5.8 mmol/kg dry wt). We concluded that O(2) availability did not limit oxidative phosphorylation in the initial minute of the normoxic trial, because substrate phosphorylation was unaffected by hyperoxia. Muscle glycogenolysis was reduced by hyperoxia during steady-state exercise, but carbohydrate oxidation (PDH(a)) was unaffected. This closer match between pyruvate production and oxidation during hyperoxia resulted in decreased muscle and blood lactate accumulation. The mechanism responsible for the decreased muscle glycogenolysis during hyperoxia in the present study is not clear.  相似文献   

19.
Protein metabolism during endurance exercise   总被引:2,自引:0,他引:2  
After reviewing all the available results from our laboratory and numerous reports in the literature concerning changes that have occurred in various aspects of protein metabolism during exercise, a number of conclusions can be drawn with some degree of confidence. During exercise, protein synthesis is depressed and this change leaves amino acids available for catabolic processes. The rate of leucine oxidation appears to be increased during exercise, and there is a movement of amino acids, mostly in the form of alanine, from muscle to liver where the rate of gluconeogenesis is increased as a result of exercise. These changes in protein metabolism are probably physiologically significant in at least three ways: amino acid conversion to citric acid cycle intermediates enhances the rate of oxidation of acetyl-CoA generated from glucose and fatty acid oxidation; increased conversion of amino acids to glucose helps to prevent hypoglycemia; oxidation of some amino acids may provide energy for muscular contraction.  相似文献   

20.
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号