首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We investigated the coregulator (coactivator and corepressor) interactions with the mineralocorticoid receptor (MR) that lead to activation and inhibition of the receptor in the presence of agonist and/or antagonist. Our results indicate that MR ligand binding domain (LBD) interacts strongly with only a few specific coactivator peptides in the presence of the agonist aldosterone and that these interactions are blocked by the antagonist eplerenone. We also discovered that cortisol, the preferred physiological ligand for the glucocorticoid receptor in humans, is a partial MR agonist/antagonist, providing a possible molecular explanation of the tissue-selective effects of glucocorticoids on MR. However, when we examined the coactivator and corepressor peptide interactions in the presence of cortisol, we found that MR bound with cortisol or aldosterone interacted with the same set of peptides. Thus, the partial agonism shown by cortisol is unlikely to be the result of differential interaction with known coactivators and corepressors. On the other hand, we have identified coactivator binding groove mutations that are critical for cortisol activation but not for aldosterone activation, suggesting that the two steroids induce different MR LBD conformations. In addition, we also show that cortisol becomes full agonist when S810L mutation is introduced in the LBD of MR. Interestingly, MR antagonists, such as eplerenone and progesterone, become partial agonist/antagonist of S810L but are still able to recruit LXXLL peptides to the mutant receptor. Together, these findings suggest a model to explain the MR activation by various ligands.  相似文献   

10.
11.
12.
13.
14.
15.
Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor beta (ERbeta) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERalpha interactions with corepressors, which are inhibited by estradiol, and resembles that of ERbeta interactions with coactivators. ERbeta /N-CoR interactions involve ERbeta AF-2, which also mediates coactivator recognition. Moreover, ERbeta recognizes a sequence (PLTIRML) in the N-CoR C-terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERbeta LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo.  相似文献   

16.
17.
18.
19.
20.
A1 adenosine receptor-binding subunits can be visualized using high affinity antagonist and agonist photoaffinity radioligands. In the present study, we examined whether agonists and antagonists bind to the same receptor-binding subunit and if agonists and antagonists induce different conformational states of the receptor in intact membranes. It was demonstrated that several agonist and antagonist photoaffinity receptor-binding subunit. When the agonist and antagonist photoaffinity labeled peptides were denatured and subjected to partial peptide map analysis using a two-dimensional gel electrophoresis system similar peptide fragments were generated from each specifically labeled protein. This suggests that both classes of ligand label and incorporate into the same binding subunit. Proteolytic digestions of agonist- and antagonist-occupied receptors in native intact membranes revealed distinct and different peptide fragments depending on whether the ligand was an agonist or an antagonist. Manipulation of incubation conditions to perturb ligand-receptor interactions alter the pattern of peptide fragments generated with each specific protease. These data suggest that agonist and antagonist photoaffinity probes interact with an incorporate into the same binding subunit but that agonist binding is associated with a unique and detectable receptor conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号