首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated and characterized cis-acting mutations that affect the regulation of the metB gene of Salmonella typhimurium LT2. The mutations were isolated in an Escherichia coli lac deletion strain lysogenized with lambda bacteriophage carrying a metB-lacZ gene fusion (lambda JBlac) in which beta-galactosidase production is dependent upon metB gene expression. The mutant lysogens show elevated, poorly regulated beta-galactosidase production. The altered regulation is a result of disruption of the methionine control system mediated by the metJ repressor. The mutations are located in a region of dyad symmetry centered near the -35 sequence of the metB promoter. We propose that these mutations alter the repressor binding site and define the metB operator sequence. In addition, we discuss a highly conserved, nonsymmetric DNA sequence of unknown function which occurs in the control regions of the metA, metC, metE, metF, metG, and metJB genes of both S. typhimurium and E. coli.  相似文献   

2.
Citric acid cycle: gene-enzyme relationships in Bacillus subtilis   总被引:28,自引:18,他引:10       下载免费PDF全文
The genetic location of mutations affecting the citric acid cycle and the properties of mutants of Bacillus subtilis possessing these mutations have been examined. Genes coding for the component enzymes of the cycle were found to be unlinked to each other and thus do not form an operon. The mutational defect in a mutant lacking fumarase mapped between thr-5 and cysB3. Mutations causing inability to produce isocitrate dehydrogenase and succinate dehydrogenase were found to map between argA11 and leu-1. The alpha-ketoglutarate dehydrogenase mutations were mapped at the terminal end of the B. subtilis chromosome through a weak linkage in phage PBS-1 transduction of one class of these mutations of ilvA2 and metB4. A second class of alpha-ketoglutarate dehydrogenase mutations mapped closer to ilvA2 and metB4 but still terminal with respect to these markers. Aconitaseless mutants possessed mutations that could not be linked to any of the known transducing segments of the chromosome. An effect of mutation conferring loss of one enzyme of the cycle on the specific activity of the other enzymes in the cycle was observed.  相似文献   

3.
A locus unlinked to either katE or katF that affected catalase levels in Escherichia coli was identified and localized between metB and ppc at 89.2 min on the genome. The locus was named katG. Mutations in katG which prevented the formation of both isoenzyme forms of the bifunctional catalase-peroxidase HPI were created both by nitrosoguanidine and by transposon Tn10 insertions. All katG+ recombinants and transductants contained both HPI isoenzymes. Despite the common feature of little or no catalase activity in four of the catalase-deficient strains, subtle differences in the phenotypes of each strain resulted from the different katG mutations. All three mutants caused by nitrosoguanidine produced a protein with little or no catalase activity but with the same subunit molecular weight and with similar antigenic properties to HPI, implying the presence of missense mutations rather than nonsense mutations in each strain. Indeed one mutant produced an HPI-like protein that retained peroxidase activity, whereas the HPI-like protein in a second mutant exhibited no catalase or peroxidase activity. The third mutant responded to ascorbate induction with the synthesis of near normal catalase levels, suggesting a regulatory defect. The Tn10 insertion mutant produced no catalase and no protein that was antigenically similar to HPI.  相似文献   

4.
The active form of protein B2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a binuclear ferric center and a free radical localized to tyrosine 122 of the polypeptide chain. MetB2 is an inactive form that lacks the tyrosine radical but retains the Fe(III) center. We earlier reported (Fontecave, M., Eliasson, R., and Reichard, P. (1989) J. Biol. Chem. 264, 9164-9170) that enzymes from E. coli interconvert B2 and metB2, possibly as part of a regulatory mechanism. Introduction of the tyrosyl radical into metB2 occurred in two steps: first, the Fe(III) center was reduced to Fe(II), generating "reduced B2"; next oxygen regenerated non-enzymatically both Fe(III) and the tyrosyl radical. Here we demonstrate that dithiothreitol (DTT) between pH 8 and 9.5 also slowly converts metB2 to B2 in the presence of oxygen. Also in this case the reaction occurs stepwise with reduced B2 as an intermediate. DTT reduces Fe(III) of both metB2 and B2. In the latter case this reaction is accompanied by the immediate loss of the tyrosyl radical. Our results indicate that the tyrosyl radical can exist only in the presence of an intact Fe(III) center. In reduced B2 iron is loosely bound to the protein, dissociates on standing and is readily removed by chelating agents. Binding decreases at higher pH. Loss of iron from reduced B2 explains why ferrous iron stimulates and iron chelators inhibit reactivation of metB2. We propose that the reactivation of mammalian ribonucleotide reductase by DTT (Thelander, M., Gr?slund, A., and Thelander, L. (1983) Biochem. Biophys. Res. Commun. 110, 859-865) may proceed via a mechanism similar to the one found here for E. coli protein B2.  相似文献   

5.
The regulation of the expression of three Escherichia coli met genes, metB, which codes for cystathionine gamma-synthetase (EC 4.2.99.9), metL, which codes for aspartokinase II-homoserine dehydrogenase II (EC 2.7.2.4-EC 1.1.1.3) and metJ, which codes for the methionine regulon aporepressor, has been studied using highly purified DNA-directed in vitro protein synthesis systems. In a system where the entire gene product is synthesized, the expression of the metB and metL genes is specifically inhibited by MetJ protein (repressor protein) and S-adenosylmethionine (AdoMet). In a simplified system that measures the formation of the first dipeptide of the gene product (fMet-Ala for the metJ gene), MetJ protein and AdoMet partially repress (approximately 40-60%) metJ gene expression. Thus, the metJ gene can be partially autoregulated by its gene product.  相似文献   

6.
The active form of protein B2, a homodimeric subunit of Escherichia coli ribonucleotide reductase, contains a diferric iron center and a cationic free radical localized to tyrosine 122 of one of the two polypeptide chains. Hydroxyurea scavenges this radical but leaves the iron center intact. The resulting metB2 (earlier named B2/HU) is enzymatically inactive. Crude extracts of E. coli catalyze the interconversion of metB2 and B2. Radical introduction into metB2 requires a flavin reductase together with a second poorly defined protein fraction ("Fraction b") as well as dioxygen, NAD(P)H, and a flavin (Fontecave, M., Eliasson, R., and Reichard, P. (1987) J. Biol. Chem. 262, 12325-12331). We now find that ferrous ions can substitute for Fraction b and that the diferric center of metB2 is reduced during anaerobic incubation of the system with reduced flavin and ferrous ions. Spectroscopic evidence and isotope experiments suggest an in situ reduction of the diferric to a diferrous center. Admission of oxygen then results in the instantaneous oxidation of tyrosine 122 to the cationic radical coupled to the reformation of the diferric center, giving enzymatically active B2. These data suggest that reduced diferrous B2 is an intermediate between metB2 and B2 during radical introduction. In addition, we find that anaerobic incubation of B2 with reduced flavin results in the loss of the tyrosyl radical and the formation of metB2. This reaction occurs in the absence of Fraction b or ferrous ions. Our experiments reconstitute with defined reagents the interconversion between metB2 and B2 observed earlier in the E. coli extract. The flavin reductase system catalyzes the interconversion in both directions with dioxygen as the critical factor deciding whether activation or inactivation of ribonucleotide reductase occurs.  相似文献   

7.
The metB gene encoding cystathionine y-synthase, the second enzyme of methionine biosynthetic pathway, was isolated from a pSL109-based Corynebacterium glutamicum gene library via complementation of an Escherichia coli metB mutant. A DNA-sequence analysis of the cloned DNA identified an open-reading frame of 1161 bp which encodes a protein with the molecular weight of 41,655 comprising of 386 amino acids. The putative protein product showed good amino acid-sequence homology to its counterpart in other organisms. Introduction of a plasmid carrying the cloned metB into the C. glutamicum resulted in a 10-fold increase in cystathionine gamma-synthase activities, demonstrating the identity of the cloned gene. The C. glutamicum metB mutant which was generated by the site-specific integration of the cloned DNA into its chromosome did not lose the ability to grow on glucose minimal medium lacking supplemental methionine. The growth rate of the mutant strain was also comparable to that of the parental strain. These data indicate that, in addition to the transsulfuration pathway, other methionine biosynthetic pathways may be present in C. glutamicum.  相似文献   

8.
Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator (CFTR) is mediated by a tyrosine-based internalization signal in the CFTR carboxyl-terminal tail 1424YDSI1427. In the present studies, two naturally occurring cystic fibrosis mutations in the amino terminus of CFTR, R31C, and R31L were examined. To determine the defect that these mutations cause, the Arg-31 mutants were expressed in COS-7 cells and their biogenesis and trafficking to the cell surface tested in metabolic pulse-chase and surface biotinylation assays, respectively. The results indicated that both Arg-31 mutants were processed to band C at approximately 50% the efficiency of the wild-type protein. However, once processed and delivered to the cell surface, their half-lives were the same as wild-type protein. Interestingly, indirect immunofluorescence and cell surface biotinylation indicated that the surface pool was much smaller than could be accounted for based on the biogenesis defect alone. Therefore, the Arg-31 mutants were tested in internalization assays and found to be internalized at 2x the rate of the wild-type protein. Patch clamp and 6-methoxy-N-(3-sulfopropyl)quinolinium analysis confirmed reduced amounts of functional Arg-31 channels at the cell surface. Together, the results suggest that both R31C and R31L mutations compromise biogenesis and enhance internalization of CFTR. These two additive effects contribute to the loss of surface expression and the associated defect in chloride conductance that is consistent with a disease phenotype.  相似文献   

9.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.  相似文献   

10.
11.
12.
Structural and functional organization of genes responsible for biosynthesis of amino acid methionine, which plays a leading role in cellular metabolism of bacteria, was studied in 24 natural Yersinia pestis strains of the major and minor subspecies from various natural plague foci located in the territory of Russian Federation and neighbouring foreign countries, and also in Y. pestis and Y. pseudotuberculosis strains recorded in the files of NCBI GenBank database. Conservatism of genes metA, metB, metC, metE, and metH as well as regulatory genes metR and metJ involved in biosynthesis of this amino acid was established. Sequencing of the variable locus of gene metB in natural Y. pestis strains of major and minor subspecies revealed that the reason for the methionine dependence of strains belonging to the major subspecies is a deletion of a single nucleotide (-G) in the 988 position from the beginning of the gene, whereas this dependence in strains belonging to subspecies hissarica results from the appearance of a single nucleotide (+G) insertion in the 989 position of gene metB. These mutations are absent in strains of the caucasica, altaica, and ulegeica subspecies of the plague agent and in strains of pseudotuberculosis microbe, which correlates with their capacity for methionine biosynthesis.  相似文献   

13.
Structure and autoregulation of the metJ regulatory gene in Escherichia coli   总被引:13,自引:0,他引:13  
The nucleotide sequence of the Escherichia coli metJ regulatory gene (312 nucleotides) has been determined as well as that of two mutations located within the gene. Analysis of the sequence downstream from the metJ gene has revealed inverted repeats homologous to several intercistronic regions, also reported to occur between operons. A hybrid protein that contains the 55 first amino acid residues of the metJ protein substituting for the 8 amino acid residues at the NH2 terminus of beta-galactosidase was produced by gene fusion. The hybrid protein retaining beta-galactosidase activity was purified. Its amino-terminal sequence was determined and this allowed us to locate the translational start codon of the metJ gene. Evidence was provided for autoregulation by repression of the metJ gene. By sequencing upstream from metJ, the region situated between the metJ and metB genes was found to contain putative operator structures that we propose to call "Met boxes."  相似文献   

14.
Recessive congenital methemoglobinemia (RCM, OMIM 250800) arises from defects in either the erythrocytic or microsomal forms of the flavoprotein, cytochrome b5 reductase (cb5r) and was the first disease to be directly associated with a specific enzyme deficiency. Of the 33 verified mutations in cb5r that give rise to either the type I (erythrocytic) or type II (generalized) forms of RCM, three of the mutations, corresponding to P144L, L148P, and R159*, are located in a segment of the primary sequence composed of residues G143 to V171 which serves as a "hinge" or "linker" region between the FAD- and NADH-binding lobes of the protein. With the exception of R159*, which produces a truncated non-functional cb5r resulting in type II RCM, the type I methemoglobinemias resulting from the P144L or L148P mutations have been proposed to be due to decreased enzyme stability. Utilizing a recombinant form of the rat cb5r enzyme, we have generated the P144L, L148P, and P144L/L148P mutants, purified the resulting proteins to homogeneity and characterized their spectroscopic, kinetic, and thermodynamic properties. The three mutant proteins retained full complements of FAD with the P144L and L148P variants being spectroscopically indistinguishable from wild-type cb5r. In contrast, kinetic analyses revealed that the P144L, L148P, and P144L/L148P variants retained only 28, 31, and 8% of wild-type NADH:cytochrome b5 reductase activity, respectively, together with significant alterations in affinity for both NADH and NAD+. In addition, FAD oxidation-reduction potentials were 32, 19, and 65 mV more positive for the mutants than the corresponding FAD/FADH2 couple in native cb5r (E0'=-272 mV). Thermal and proteolytic stability measurements indicated that all three mutants were less stable than the wild-type protein while differential spectroscopy indicated altered pyridine nucleotide binding in all three variants. These results demonstrate that the "hinge" region is important in maintaining the correct orientation of the flavin- and pyridine nucleotide-binding lobes within the protein for efficient electron transfer and that the P144L and L148P mutations disrupt the normal registration of the FAD- and NADH-binding lobes resulting in altered affinities for both the physiological reducing substrate, NADH and its product, NAD+.  相似文献   

15.
16.
GTP-binding proteins of the Rab family were cloned from human platelets using RT-PCR. Clones corresponding to two novel Rab proteins, Rab31 and Rab32, and to Rab11A, which had not been detected in platelets previously, were isolated. The coding sequence of Rab31 (GenBank accession no. U59877) corresponded to a 194 amino-acid protein of 21.6 kDa. The Rab32 sequence was extended to 1000 nucleotides including 630 nucleotides of coding sequence (GenBank accession no. U59878) but the 5' coding sequence was only completed later by others (GenBank accession no. U71127). Human Rab32 cDNA encodes a 225 amino-acid protein of 25.0 kDa with the unusual GTP-binding sequence DIAGQE in place of DTAGQE. Northern blots for Rab31 and Rab32 identified 4.4 kb and 1.35 kb mRNA species, respectively, in some human tissues and in human erythroleukemia (HEL) cells. Rabbit polyclonal anti-peptide antibodies to Rab31, Rab32 and Rab11A detected platelet proteins of 22 kDa, 28 kDa and 26 kDa, respectively. Human platelets were highly enriched in Rab11A (0.85 microg x mg of platelet protein(-1)) and contained substantial amounts of Rab32 (0.11 microg x mg protein(-1)). Little Rab31 was present (0.005 microg x mg protein(-1)). All three Rab proteins were found in both granule and membrane fractions from platelets. In rat platelets, the 28-kDa Rab32 was replaced by a 52-kDa immunoreactive protein. Rab31 and Rab32, expressed as glutathione S-transferase (GST)-fusion proteins, did not bind [alpha-(32)P]GTP on nitrocellulose blots but did bind [(35)S]GTP[S] in a Mg(2+)-dependent manner. Binding of [(35)S]GTP[S] was optimal with 5 microm Mg(2+)(free) and was markedly inhibited by higher Mg(2+) concentrations in the case of GST-Rab31 but not GST-Rab32. Both proteins displayed low steady-state GTPase activities, which were not inhibited by mutations (Rab31(Q64L) and Rab32(Q85L)) that abolish the GTPase activities of most low-M(r) GTP-binding proteins.  相似文献   

17.
Selection, adaptation, and bacterial operons   总被引:6,自引:0,他引:6  
B G Hall 《Génome》1989,31(1):265-271
Bacteria are especially useful as systems to study the molecular basis of adaptive evolution. Selection for novel metabolic capabilities has allowed us to study the evolutionary potential of organisms and has shown that there are three major "strategies" for the evolution of new metabolic functions. (i) Regulatory mutations may allow a gene to be expressed under unusual conditions. If the product of that gene is already active toward a novel resource, then a regulatory mutation alone may confer a new metabolic capability. (ii) Structural gene mutations may alter the catalytic properties of enzymes so that they can act on novel substrates. These structural gene mutations may dramatically improve catalytic capabilities, and in some cases they can confer entirely new capabilities upon enzymes. In most cases both regulatory and structural gene mutations are required for the effective evolution of new metabolic functions. (iii) Operons that are normally silent, or cryptic, may be activated by either point mutations or by the action of mobile genetic elements. When activated, these operons can provide entirely new pathways for the metabolism of novel resources. Selection can also play a role in modulating the probability that a particular adaptive mutation will occur. In this paper I present evidence that a specific adaptive mutation, reversion of the metB1 mutation, occurs 60 to 80 times more frequently during prolonged selection on plates under conditions where the members of the population are not growing than it does in growing cells under nonselective conditions. This selective condition, methionine starvation, does not increase the frequency of other mutations unrelated to methionine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to be alleles of priA. Suppression depends on the RecA, RecBCD, RecF, RuvAB, and RuvC recombination proteins. Nine srgA mutations were sequenced and shown to specify mutant PriA proteins with single amino acid substitutions located in or close to one of the conserved helicase motifs. The mutant proteins retain the ability to catalyze primosome assembly, as judged by the viability of recG srgA and srgA strains and their ability to support replication of plasmids based on the ColE1 replicon. Multicopy priA+ plasmids increase substantially the recombination- and repair-deficient phenotype of recG strains and confer similar phenotypes on recG srgA double mutants but not on ruvAB or wild-type strains. The multicopy effect is eliminated by K230R, C446G, and C477G substitutions in PriA. It is concluded that the 3'-5' DNA helicase/translocase activity of PriA inhibits recombination and that this effect is normally countered by RecG.  相似文献   

19.
The active form of protein B2, the small subunit of ribonucleotide reductase, contains two dinuclear Fe(III) centers and a tyrosyl radical. The inactive metB2 form also contains the same diferric complexes but lacks the tyrosyl radical. We now demonstrate that incubation of metB2 with hydrogen peroxide generates the tyrosyl radical. The reaction is optimal at 5.5 nM hydrogen peroxide, with a maximum of 25-30% tyrosyl radical being formed after approximately 1.5 hr of incubation. The activation reaction is counteracted by a hydrogen peroxide-dependent reduction of the tyrosyl radical. It is likely that the generation of the radical proceeds via a ferryl intermediate, as in the proposed mechanisms for cytochrome P-450 and the peroxidases.  相似文献   

20.
The dnaA gene is essential for initiation of chromosomal replication in Escherichia coli. A gene homologous with the E. coli dnaA was found in the replication origin region of the Bacillus subtilis chromosome. We have now isolated a temperature sensitive mutant of the B. subtilis dnaA by in vitro mutagenesis of the cloned gene. At a nonpermissive temperature, 49 degrees C, DNA replication stops completely after 60% increase in a rich medium, while cell mass continues to increase exponentially at 2.5 times the rate at 30 degrees C. A ratio of gene frequency between purA (origin marker) and metB (terminus marker) changes gradually from 2.7 at 30 degrees C to 1.0 in 45 min at 49 degrees C, indicating completion of the ongoing replication cycle. Upon the temperature shift down to 30 degrees C after the incubation at 49 degrees C for 60 min, DNA replication resumes without delay, and the purA/metB ratio increases rapidly to 6, i.e. consecutive initiation of more than two rounds of replication. Addition of chloramphenicol at the time of the temperature shift down did not inhibit the increase in the purA/metB ratio, while rifampicin inhibited the re-initiation completely. The mutation is a single base change from C to T in the dnaA gene resulting in an amino acid substitution from Ser to Phe in the DnaA protein. The mutation was responsible for both temperature sensitive growth and the defect in initiation of chromosomal replication. We observed a remarkable correlation between the amount of DnaA protein and the amount of initiation potential accumulated during incubation at the non-permissive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号