首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song C  Wang Q  Li CC 《Biochemistry》2007,46(51):14889-14898
The 97 kDa valosin-containing protein (VCP) belongs to a highly conserved AAA (ATPases associated with a variety of activities) family and contains two ATPase domains, D1 and D2. VCP participates in numerous cellular activities, such as membrane fusion, postmitotic Golgi reassembly, endoplasmic reticulum-associated degradation, ubiquitin-proteasome-mediated proteolysis, and many others. In performing these activities, VCP presumably acts as a molecular chaperone that prevents protein aggregation and modifies protein conformation. In this study, we characterized the aggregation-prevention activity of VCP and identified the structural requirement for this activity. We used multiple methods to treat aggregation-prone luciferase (Luc) and showed that VCP prevents the aggregation of Luc in vitro. These results are in agreement; in vivo RNA interference analyses showed that a reduction of VCP level results in more aggregation of Luc in cells. Structural and functional analyses further demonstrated that the D1 domain of VCP is sufficient to mediate the aggregation-prevention activity, which does not require ATP binding, ATP hydrolysis, or a hexameric structure of VCP. Together, these results indicate that (1) VCP prevents protein aggregation in vitro and in vivo, (2) this aggregation-prevention activity is mediated mainly through the D1 domain of VCP, and (3) this activity does not require ATPase activity or a hexameric structure of VCP.  相似文献   

2.
The 97-kDa valosin-containing protein (p97-VCP) belongs to the AAA (ATPases associated with various cellular activities) family and acts as a molecular chaperone in diverse cellular events, including ubiquitinproteasome-mediated degradation. We previously showed that VCP contains a substrate-binding domain, N, and two conserved ATPase domains, D1 and D2, of which D2 is responsible for the major enzyme activity. VCP has a barrel-like structure containing two stacked homo-hexameric rings made of the D1 and D2 domains, and this structure is essential for its biological functions. During ATPase cycles, VCP undergoes conformational changes that presumably apply tensions to the bound substrate, leading to the disassembly of protein complexes or unfolding of the substrate. How ATPase activity is coupled with the conformational changes in VCP complex and the D1 and D2 rings is not clear. In this report, we took biochemical approaches to study the structure of VCP in different nucleotide conditions to depict the conformational changes in the ATPase cycles. In contrast to many AAA chaperones that require ATP/ADP to form oligomers, both wild type VCP and ATP-binding site mutants can form hexamers without the addition of nucleotide. This nucleotide-independent hexamerization requires an intact D1 and the down-stream linker sequence of VCP. Tryptophan fluorescence and trypsin digestion analyses showed that ATP/ADP binding induces dramatic conformational changes in VCP. These changes do not require the presence of an intact ATP-binding site in D1 and is thus mainly attributed to the D2 domain. We propose a model whereby D1, although undergoing minor conformational changes, remains as a relatively trypsin-resistant hexameric ring throughout the ATPase cycle, whereas D2 only does so when it binds to ATP or ADP. After ADP is released at the end of the ATP hydrolysis, D2 ring is destabilized and adopts a relatively flexible and open structure.  相似文献   

3.
The 97-kDa valosin-containing protein (p97-VCP) plays a role in a wide variety of cellular activities, many of which are regulated by the ubiquitin-proteasome (Ub-Pr)-mediated degradation pathway. We previously demonstrated that VCP binds to multi-ubiquitin chains and may act as a molecular chaperone that targets the ubiquitinated substrates to the proteasome for degradation. In this report, we show that although the ubiquitin chain-binding activity, carried out by the N-terminal 200 residues (N domain), is necessary for the degradation of proteasome substrates, it is not sufficient. Using in vitro degradation assays, we demonstrated that the entire VCP molecule, consisting of the N domain and two ATPase domains D1 and D2, is required for mediating the Ub-Pr degradation. The ATPase activity of VCP requires Mg(2+), and is stimulated by high temperature. Under optimal conditions, VCP hydrolyzes ATP with a K(m) of approximately 0.33 mm and a V(max) of approximately 0.52 nmol P(i) min(-1) microg(-1). At a physiological temperature, mutation in D2 significantly inhibits the ATPase activity, while that in D1 has little effect. Interestingly, mutations in D1, but not D2, abolish the heat-stimulated ATPase activity. Thus, we provide the first demonstration that the ATPase activity of VCP is required for mediating the Ub-Pr degradation, that D2 accounts for the major ATPase activity, and that D1 contributes to the heat-induced activity.  相似文献   

4.
p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.  相似文献   

5.
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.  相似文献   

6.
The 97-kDa valosin-containing protein (p97 or VCP) is a type-II AAA ( ATPases associated with a variety of activities) ATPases, which are characterized by possessing two conserved ATPase domains. VCP forms a stable homo-hexameric structure, and this two-tier ring-shaped complex acts as a molecular chaperone that mediates many seemingly unrelated cellular activities. The involvement of VCP in the ubiquitin-proteasome degradation pathway and the identification of VCP cofactors provided us important clues to the understanding of how this molecular chaperone works. In this review, we summarize the reported biological functions of VCP and explore the molecular mechanisms underlying the diverse cellular functions. We discuss the structural and biochemical studies, and elucidate how this sophisticated enzymatic machine converts chemical energy into the mechanical forces required for the chaperone activity.  相似文献   

7.
Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is caused by mutations in Valosin-containing protein (VCP), a hexameric AAA ATPase that participates in a variety of cellular processes such as protein degradation, organelle biogenesis, and cell-cycle regulation. To understand how VCP mutations cause IBMPFD, we have established a Drosophila model by overexpressing TER94 (the sole Drosophila VCP ortholog) carrying mutations analogous to those implicated in IBMPFD. Expression of these TER94 mutants in muscle and nervous systems causes tissue degeneration, recapitulating the pathogenic phenotypes in IBMPFD patients. TER94-induced neurodegenerative defects are enhanced by elevated expression of wild-type TER94, suggesting that the pathogenic alleles are dominant active mutations. This conclusion is further supported by the observation that TER94-induced neurodegenerative defects require the formation of hexamer complex, a prerequisite for a functional AAA ATPase. Surprisingly, while disruptions of the ubiquitin-proteasome system (UPS) and the ER-associated degradation (ERAD) have been implicated as causes for VCP-induced tissue degeneration, these processes are not significantly affected in our fly model. Instead, the neurodegenerative defect of TER94 mutants seems sensitive to the level of cellular ATP. We show that increasing cellular ATP by independent mechanisms could suppress the phenotypes of TER94 mutants. Conversely, decreasing cellular ATP would enhance the TER94 mutant phenotypes. Taken together, our analyses have defined the nature of IBMPFD-causing VCP mutations and made an unexpected link between cellular ATP level and IBMPFD pathogenesis.  相似文献   

8.
The 97-kDa molecular chaperone valosin-containing protein (VCP) belongs to a highly conserved AAA family and forms a hexameric structure that is essential for its biological functions. The AAA domain contains highly conserved motifs, the Walker A, Walker B, and the second region of homology (SRH). Although Walker A and B motifs mediate ATP binding and hydrolysis, respectively, the function of the SRH in VCP is not clear. We examined the significance of the SRH in VCP, especially the conserved Arg(359) and Arg(362) in the first AAA domain, D1 and Arg(635) and Arg(638) in the second AAA domain, D2. We show that Arg(359) and Arg(362) in D1 are critical for maintaining the hexameric structure and the ability to bind the polyubiquitin chains. Although the rest of the tested SRH mutants retain the hexameric structure, all of them exhibit severely reduced ATPase activity. Tryptophan fluorescence analysis showed that all of the tested mutants can bind to ATP or ADP. Thus, the reduced ATPase activity likely results from the hampered communications among protomers during hydrolysis. Moreover, when the ATPase-defective mutant R635A or R638A is mixed with the Walker A mutant of D2, the ATPase activity is partially restored, suggesting that Arg(635) and Arg(638) can stimulate the ATPase activity of the neighboring protomer. Interestingly, mutation of Arg(359) and Arg(362) uncouples the inhibitory effect of p47, a VCP co-factor, on the ATPase activity of VCP. Therefore, the Arg residues allow D1 to take on a specific conformation that is required for substrate binding and co-factor communications. Taken together, these results demonstrate that the conserved Arg residues in the SRH of both D1 and D2 play critical roles in communicating the conformational changes required for ATP hydrolysis, and SRH in D1 also contributes to substrate binding and co-factor communications.  相似文献   

9.
Valosin-containing protein (VCP)/p97 is an AAA family ATPase that has been implicated in the removal of misfolded proteins from the endoplasmic reticulum and in membrane fusion. p97 forms a homohexamer whose protomers consist of an N-terminal (N) domain responsible for binding to effector proteins, followed by two AAA ATPase domains, D1 and D2. Small-angle X-ray scattering (SAXS) measurements of p97 in the presence of AMP-PNP (ATP state), ADP-AlF(x) (hydrolysis transition state), ADP, or no nucleotide reveal major changes in the positions of the N domains with respect to the hexameric ring during the ATP hydrolysis cycle. Nucleotide binding and hydrolysis experiments indicate that D2 inhibits nucleotide exchange by D1. The data suggest that the conversion of the chemical energy of ATP hydrolysis into mechanical work on substrates involves transmission of conformational changes generated by D2 through D1 to move N.  相似文献   

10.
p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types.  相似文献   

11.
The AAA (ATPases associated with a variety of cellular activities) family of proteins bind, hydrolyze, and release ATP to effect conformational changes, assembly, or disassembly upon their binding partners and substrate molecules. One of the members of this family, the hexameric p97/valosin-containing protein p97/VCP, is essential for the dislocation of misfolded membrane proteins from the endoplasmic reticulum. Here, we observe large motions and dynamic changes of p97/VCP as it proceeds through the ATP hydrolysis cycle. The analysis is based on crystal structures of four representative ATP hydrolysis states: APO, AMP-PNP, hydrolysis transition state ADP x AlF3, and ADP bound. Two of the structures presented herein, ADP and AMP-PNP bound, are new structures, and the ADP x AlF3 structure was re-refined to higher resolution. The largest motions occur at two stages during the hydrolysis cycle: after, but not upon, nucleotide binding and then following nucleotide release. The motions occur primarily in the D2 domain, the D1 alpha-helical domain, and the N-terminal domain, relative to the relatively stationary and invariant D1alpha/beta domain. In addition to the motions, we observed a transition from a rigid state to a flexible state upon loss of the gamma-phosphate group, and a further increase in flexibility within the D2 domains upon nucleotide release. The domains within each protomer of the hexameric p97/VCP deviate from strict 6-fold symmetry, with the more flexible ADP state exhibiting greater asymmetry compared to the relatively rigid ADP x AlF3 state, suggesting a mechanism of action in which hydrolysis and conformational changes move about the hexamer in a processive fashion.  相似文献   

12.
13.
p97/VCP is a member of the AAA ATPase family and has roles in both membrane fusion and ubiquitin dependent protein degradation. Here, we present a 3.6A crystal structure of murine p97 in which D2 domain has been modelled as poly-alanine and the remaining approximately 100 residues are absent. The resulting structure illustrates a head-to-tail packing arrangement of the two p97 AAA domains in a natural hexameric state with D1 ADP bound and D2 nucleotide free. The head-to-tail packing arrangement observed in this structure is in contrast to our previously predicted tail-to-tail packing model. The linker between the D1 and D2 domains is partially disordered, suggesting a flexible nature. Normal mode analysis of the crystal structure suggests anti-correlated motions and distinct conformational states of the two AAA domains.  相似文献   

14.
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.  相似文献   

15.
p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.  相似文献   

16.
Valosin-containing protein (p97/VCP) has been proposed as playing crucial roles in a variety of physiological and pathological processes such as cancer and neurodegeneration. We previously showed that VCP(K524A), an ATPase activity-negative VCP mutant, induced vacuolization, accumulation of ubiquitinated proteins, and cell death, phenotypes commonly observed in neurodegenerative disorders. However, any regulatory mechanism of its ATPase activity has not yet been clarified. Here, we show that oxidative stress readily inactivates VCP ATPase activity. With liquid chromatography/tandem mass spectrometry, we found that at least three cysteine residues were modified by oxidative stress. Of them, the 522nd cysteine (Cys-522) was identified as the site responsible for the oxidative inactivation of VCP. VCP(C522T), a single-amino acid substitution mutant from cysteine to threonine, conferred almost complete resistance to the oxidative inactivation. In response to oxidative stress, VCP strengthened the interaction with Npl4 and Ufd1, both of which are essential in endoplasmic reticulum-associated protein degradation. Cys-522 is located in the second ATP binding motif and is highly conserved in multicellular but not unicellular organisms. Cdc48p (yeast VCP) has threonine in the corresponding amino acid, and it showed resistance to the oxidative inactivation in vitro. Furthermore, a yeast mutant (delta cdc48 + cdc48[T532C]) was shown to be susceptible to oxidants-induced growth inhibition and cell death. These results clearly demonstrate that VCP ATPase activity is regulated by the oxidative modification of the Cys-522 residue. This regulatory mechanism may play a key role in the conversion of oxidative stress to endoplasmic reticulum stress response in multicellular organisms and also in the pathological process of various neurodegenerative disorders.  相似文献   

17.
The ordered assembly of DNA repair factors on chromatin has been studied in great detail, whereas we are only beginning to realize that selective extraction of proteins from chromatin plays a central role in the DNA damage response. Interestingly, the protein modifier ubiquitin not only regulates the well-documented recruitment of repair proteins, but also governs the temporally and spatially controlled extraction of proteins from DNA lesions. The facilitator of protein extraction is the ubiquitin-dependent ATPase valosin-containing protein (VCP)/p97 complex, which, through its segregase activity, directly extracts ubiquitylated proteins from chromatin. In this review, we summarize recent studies that uncovered this important role of VCP/p97 in the cellular response to genomic insults and discuss how ubiquitin regulates two intuitively counteracting activities at sites of DNA damage.  相似文献   

18.
CDC48/p97 is an essential AAA-ATPase chaperone that functions in numerous diverse cellular activities through its interaction with specific adapter proteins. The ubiquitin regulatory X (UBX)-containing protein, PUX1, functions to regulate the hexameric structure and ATPase activity of AtCDC48. To characterize the biochemical mechanism of PUX1 action on AtCDC48, we have defined domains of both PUX1 and AtCDC48 that are critical for interaction and oligomer disassembly. Binding of PUX1 to AtCDC48 was mediated through a region containing both the UBX domain and the immediate C-terminal flanking amino acids (UBX-C). Like other UBX domains, the primary binding site for the UBX-C of PUX1 is the N(a) domain of AtCDC48. Alternative plant PUX protein UBX domains also bind AtCDC48 through the N terminus but were found not to be able to substitute for the action imparted by the UBX-C of PUX1 in hexamer disassembly, suggesting unique features for the UBX-C of PUX1. We propose that the PUX1 UBX-C domain modulates a second binding site on AtCDC48 required for the N-terminal domain of PUX1 to interact with and promote dissociation of the AtCDC48 hexamer. Utilizing Atcdc48 ATP hydrolysis and binding mutants, we demonstrate that PUX1 binding was not affected but that hexamer disassembly was significantly influenced by the ATP status of AtCDC48. ATPase activity in both the D1 and the D2 domains was critical for PUX1-mediated AtCDC48 hexamer disassembly. Together these results provide new mechanistic insight into how the hexameric status and ATPase activity of AtCDC48 are modulated.  相似文献   

19.
The hexameric ATPase p97/yeast Cdc48p has been implicated in a number of cellular events that are regulated during mitosis, including homotypic membrane fusion, spindle pole body function, and ubiquitin-dependent protein degradation. p97/Cdc48p contains two conserved consensus p34cdc2 kinase phosphorylation sites within its second ATP binding domain. This domain is likely to play a role in stabilising the hexameric form of the protein. We therefore investigated whether p97 could be phosphorylated by p34cdc2 kinase in vitro, and whether phosphorylation might influence the oligomeric status of p97. Monomeric, but not hexameric, p97 was phosphorylated by p34cdc2 kinase, as was the p97-associated protein p47. However, phosphorylation by p34cdc2 kinase did not impair subsequent re-hexamerisation of p97, implying that the phosphorylated residue(s) are not critical for interaction between p97 monomers. Moreover, p97 within both interphase and mitotic cytosols was almost exclusively hexameric, suggesting that the activity of p97 is not regulated during mitosis by influencing the extent of oligomerisation.  相似文献   

20.

Background

Retrodifferentiation and regained proliferative capacity of growth-arrested human leukemic cells after monocyte-like differentiation requires proteolytic activities together with distinct regulatory factors. The AAA ATPase valosin-containing protein (VCP/p97) contributes to protein degradation and cell cycle regulation, respectively, and it was of interest to study a possible role of VCP/p97 during this myelomonocytic differentiation and retrodifferentiation.

Results

Separation of autonomously proliferating human U937 myeloid leukemia cells by centrifugal elutriation demonstrated unaltered VCP/p97 expression levels throughout distinct phases of the cell cycle. However, phorbol ester-induced G0/G1 cell cycle arrest in differentiating human U937 leukemia cells was associated with a significantly increased protein and mRNA amount of this AAA ATPase. These elevated VCP/p97 levels progressively decreased again when growth-arrested U937 cells entered a retrodifferentiation program and returned to the tumorigenic phenotype. Whereas VCP/p97 was observed predominantly in the cytosol of U937 tumor and retrodifferentiated cells, a significant nuclear accumulation appeared during differentiation and G0/G1 growth arrest. Analysis of subcellular compartments by immunoprecipitations and 2D Western blots substantiated these findings and revealed furthermore a tyrosine-specific phosphorylation of VCP/p97 in the cytosolic but not in the nuclear fractions. These altered tyrosine phosphorylation levels, according to distinct subcellular distributions, indicated a possible functional involvement of VCP/p97 in the leukemic differentiation process. Indeed, a down-modulation of VCP/p97 protein by siRNA revealed a reduced expression of differentiation-associated genes in subsequent DNA microarray analysis. Moreover, DNA-binding and proliferation-associated genes, which are down-regulated during differentiation of the leukemic cells, demonstrated elevated levels in the VCP/p97 siRNA transfectants.

Conclusion

The findings demonstrated that monocytic differentiation and G0/G1 growth arrest in human U937 leukemia cells was accompanied by an increase in VCP/p97 expression and a distinct subcellular distribution to be reverted during retrodifferentiation. Together with a down-modulation of VCP/p97 by siRNA, these results suggested an association of this AAA ATPase in the differentiation/retrodifferentiation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号