首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restriction endonuclease fragment length variations (RFLVs) were detected by using a rat cDNA probe for the bilirubin UDP-glucuronosyltransferase (UDPGT) gene between two mouse strains, 129/Sv and MOL-MIT. RFLVs of the gene were found byEcoRI andPvuII digestions. From linkage analyses of the three-point cross test usingElo andEn-1 as marker genes, the bilirubin UDPGT gene was mapped at position 37 on chromosome 1. Bilirubin and phenol UDPGTs have been suggested to be expressed by a single gene by alternative splicing in human and rat. The mouse bilirubin UDPGT gene was namedGnt-1.This study was supported by Grant-in-Aid for Research Project A-II from the Institute for Developmental Research, Aichi Prefecture Colony.  相似文献   

2.
3.
4.
Gunn rats lack UDP-glucuronosyltransferase (UDPGT) activity toward bilirubin. In addition, a UDPGT isoform which is active toward 4-nitrophenol and is induced by 3-methylcholanthrene (3-MC) in normal rats, is produced in a nonfunctional truncated form in Gunn rats due to the deletion of a single guanosine residue in the coding region of its mRNA. The hepatic concentration of bilirubin-UDPGT mRNA was lower in Gunn rats than in congeneic normal rats. However, bilirubin-UDPGT mRNA was of apparently normal length and was induced by clofibrate, a known inducer of bilirubin-UDPGT activity. 3' regions of bilirubin- and 3-MC-inducible UDPGT mRNAs have identical nucleotide sequences; the single base deletion in the 3-MC-inducible UDPGT in Gunn rats occurs within this region. Using oligonucleotide primers corresponding to the identical and unique regions of the two mRNAs, and polymerase chain reaction, we amplified segments of mRNAs for the bilirubin- and 3-MC-inducible UDPGTs from normal and Gunn rat livers. Both amplified DNAs in Gunn rats lacked the restriction site for BstNI. Nucleotide sequence determination revealed that bilirubin- and 3-MC-inducible UDPGT mRNAs in Gunn rats contain an identical frame-shift deletion of a single guanosine residue within the common region of their coding sequences.  相似文献   

5.
A human liver microsomal UDP glucuronosyltransferase (UDPGT) that demonstrates reactivity with estriol (pI 7.4 UDPGT) has been purified to homogeneity and characterized further. No activity toward morphine, 4-hydroxybiphenyl, bilirubin, or tripelennamine was observed. The estriol UDPGT shows immunoreactivity with antibodies raised against rat hepatic microsomal 3 alpha- and 17 beta-hydroxysteroid UDPGTs but not with antibodies raised against rat hepatic microsomal p-nitrophenol UDPGT. The NH2-terminal sequence of the purified protein was determined and found to correspond to an identical sequence in the deduced amino acid sequence of a cDNA obtained from a human liver library in lambda gt11 (HLUG4). Sequence analysis revealed that HLUG4 is 2094 bp in length and encodes a protein of 523 amino acids which has a 16 amino acid leader sequence, followed by an untranslated 3' region of 525 bp. Three potential N-glycosylation sites were identified in the predicted sequence. The deduced amino acid sequence of estriol UDPGT showed 82% identity with the deduced amino acid sequence of another human hepatic cDNA (HLUG25), which has been expressed as a UDPGT capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid, strongly suggesting that these proteins are members of the same gene subfamily.  相似文献   

6.
Angiotensinogen is an 2 involved in the maintenance of blood pressure and electrolyte balance. We have refined the position of the mouse angiotensinogen locus (Agt) on Chromosome (Chr) 8 and have also confirmed the assignment of the human angiotensinogen locus (AGT) to Chr 1. The segregation of several restriction fragment length variants (RFLVs) was followed in two interspecific backcross sets and in four recombinant inbred (RI) mouse sets. Analysis of the segregation patterns closely linked Agt to Aprt and Emv-2, which places the angiotensionogen locus on the distal end of mouse Chr 8. Additionally, a literature search has revealed that the strain distribution pattern (SDP) for the mouse skeletal -actin locus 1 (Actsk-1, previously Actal, Acta, or Acts) is nearly identical to the SDP for Agt in two RI sets. On the basis of this information we were able to reassign Actsk-1 to mouse Chr 8. By screening a panel of human-mouse somatic cell hybrids, we confirmed that the human angiotensioogen locus lies on Chr 1. This information describes a new region of conserved linkage homology between mouse Chr 8 and human Chr 1. It also defines the end of a large region of conserved linkage homology between mouse Chr 8 and human Chr 16.  相似文献   

7.
The effects of fluorinated analogues on the anaerobic transformation of phenol to benzoate were examined. At 250 M 2- or 3-fluorophenol, phenol transformation was delayed. 2-Fluorophenol had no apparent effect on subsequent degradation of benzoate, but benzoate accumulated in the presence of 250 M 3-fluorophenol. In contrast, 4-fluorophenol at 2 mM had no effect on either phenol transformation or benzoate degradation. Phenol and 2-, or 3-fluorophenol were transformed simultaneously, but phenol was transformed more rapidly than either fluorophenol. Thus, fluorinated analogues of phenol did not prevent anaerobic transformation of phenol to benzoate. 2-Fluorophenol was converted to 3-fluorobenzoate, and phenol enhanced the rate and extent of its transformation. 3-Fluorophenol was transformed to 2-fluorobenzoate to a limited extent (3%) when phenol was present. 4-Fluorophenol was not transformed regardless of the presence of phenol. 3-Fluoro-4-hydroxybenzoate, a potential fluorinated intermediate product of para-carboxylation, was transformed rapidly to 2-fluorophenol and 3-fluorobenzoate, irrespective of the presence of phenol, indicating that both dehydroxylation and decarboxylation occurred. Initially, 2-fluorophenol and 3-fluorobenzoate were rapidly formed in an approximate molar ratio of 2 : 1. Once 3-fluoro-4-hydroxybenzoate was completely removed, the 2-fluorophenol, initially formed, was converted to 3-fluorobenzoate at a slower rate. Thus, phenol enhanced transformation of the fluorinated analogues, and the products of transformation suggested para-carboxylation. 3-Fluoro-2-hydroxybenzoate was not transformed in either the presence or absence of phenol, indicating that ortho-carboxylation did not occur.Abbreviations 3F4HB 3-fluoro-4-hydroxybenzoate - 3F2HB 3-fluoro-2-hydroxybenzoate (3-fluorosalicylate) Contribution No. 692, Environmental Research Laboratory, U.S. EPA, Gulf Breeze, FL. 32561, USA  相似文献   

8.
Summary The degradation of phenol by a defined mixed culture, consisting of Pseudomonas putida P8 and Cryptococcus elinovii H1, was studied. The microorganisms were entrapped either in 30 g·l-1 calcium-alginate or in chitosan-alginate. Chitosan-alginate entrapment was suitable for a continuous culture. The coimmobilized mixed culture of Cryptococcus elinovii H1 which degrades phenol via an ortho pathway and of Pseudomonas putida P8 which uses the meta cleavage pathway was able to degrade high phenol concentrations up to 3.2 g·l-1 in semicontinuous cultures. The degradation performance in continuous cultures could reach a maximum of 0.41 g·l-1·h-1 phenol. The mixed culture could be stored for up to six months without loss of phenol degradation capacity.Dedicated to Professor Dr. Dr. h. c. K. Esser on the occasion of his 65th birthday  相似文献   

9.
The Q4 class I gene has been shown to participate in gene conversion events within the mouse major histocompatibility complex. Its complete genomic nucleotide sequence has been determined. The 5 half of Q4 resembles H-2 genes more strongly than other Q genes. Its 3 end, in contrast, is Q-like and contains a translational stop signal in exon 5 which predicts a polypeptide with an incomplete membrane spanning segment. The presence of two inverted B1 repeats suggests that part of the Q4 gene may be mobile within the genome. Gene transfer experiments have shown that the Q4 gene encodes a 2-microglobulin associated polypeptide of Mr 41 000. A similar protein was found in activated mouse spleen cells. The Q4 polypeptide was found to be secreted both by spleen cells and by transfected fibroblasts and was not detectable on the cell surface. Antibody binding and two-dimensional gel electrophoresis indicate that the Q4 molecule is identical to a mouse class I polypeptide, Qb-1, which has been previously described.  相似文献   

10.
Multiple homologous sequences for the ferritin L subunit are present in mammalian genomes, but so far, only one expressed gene has been described. Here we report the isolation of a cDNA from a mouse bone marrow library, corresponding to an isoform of the mouse ferritin L subunit. This new subunit, that we named Lg, differs from the L subunit of ten amino acids. Specific amplification of mouse genomic DNA using the polymerase chain reaction (PCR) confirmed the presence of this Lg sequence in the mouse genome but also suggested that it must be encoded by an intronless gene. Using a series of different Lg-specific oligonucleotides as probes, we subsequently isolated a genomic clone containing an uninterrupted sequence, identical to the Lg cDNA. This Lg gene lacks introns and does not contain the 28 base pairs (bp) conserved motif usually present at the 5 end of most ferritin mRNAs, which confers translational regulation by iron. When transiently transfected into K562 cells, this Lg genomic clone is actively transcribed, suggesting that, although it possesses the characteristics of a processed pseudogene, it is likely to correspond to the gene encoding this new ferritin subunit.  相似文献   

11.
The kinetics of bio-oxidation by a microbial ensemble of a model mixture of contaminants that mimicked the ground-water pollution plume at an existing contaminated site was investigated. Phenol at 50 mg/l and a mixture of ten organic contaminants (MOC) (benzene, tetrachloromethane, trichloroethylene, toluene, o-xylene, 1,4-dichlorobenzene, o-cresol, nitrobenzene, naphthalene and 2,6-dichlorophenol) at individual concentrations ranging from 150 g/l to 600 g/l were the components of the model mixture. The microbial ensemble consisted of at least three Pseudomonas spp. isolated from the polluted site. Patterns of oxygen uptake rate (OUR) for the oxidation of phenol alone and with added MOC were treated mathematically. The values for kinetic parameters that gave the best fit to the data were respectively 11.29 and 15.03 ml O2 h–1 (mg protein)–1 for the OUR maximum (OURmax), 75.89 mg/l and 33.66 mg/l for the saturation constant (K s), 105.92 mg/l and 36.44 mg/l for the inhibitor constant (K i), and 89.66 mg/l and 35.02 mg/l the substrate minimum inhibitory concentration (S mic). This study also scrutinised interference between the two components of the model mixture of contaminants (phenol and MOC) on the basis of variations in kinetic patterns. MOC was shown to be toxic at milligram per litre levels. The microbial ensemble increased phenol oxidation in response to MOC, possibly to obtain the energy to overcome this toxic effect. This was indicated by an acceleration of phenol oxidation in response to increasing concentrations of MOC and higher OURmax for oxidation of phenol in the presence of MOC. The toxicity of MOC also resulted in enhanced vulnerability of the microbial ensemble to a phenol inhibitory effect, indicated by the diminution of K i and S mic. The microbial ensemble showed high resistance to inhibition by the sole presence of phenol possibly because of adaptation to toxic features of MOC during the processes of enrichment and cultivation.  相似文献   

12.
The rat gene encoding oncomodulin (OM), a small calcium-binding protein, is under the control of a solo LTR derived from an endogenous intracisternal A-particle. The latter sequence is the only OM promoter analyzed so far. In order to study cell-type-specific OM expression in a species lacking LTR sequences in the OM locus, we initially synthesized an OM cDNA from mouse placenta. By sequencing, we found a 137-bp-long 5 leader region that differed markedly from its rat counterpart but had high similarity to several mouse genomic sequences. Primers specific to this sequence in addition with primers specific for an exon 2/intron 2 sequence were used to screen a mouse ES cell line genomic P1 library. One positive clone contained the whole OM gene, including intron 1 of 25 kb and a 5 flanking region of 27 kb lacking an LTR. The region upstream of exon 1 contains no TATA or CCAAT boxes but has a homopurine/homopyrimidine stretch of 102 bp as well as a (CA)22 repeat. The latter sequence is polymorphic and was therefore, used to map the OM gene to the distal end of the long arm of mouse Chromosome (Chr) 5 by interspecific backcross analysis. Additonally we localized the OM gene by in situ hybridization to the region G1-3 on Chr 5, confirming the genetic linkage results. Finally, the OM gene was found to be structurally conserved and to exist in a single copy in mammals.  相似文献   

13.
We present here the genetic mapping of the -skeletal actin locus (Actsk-1) on mouse Chromosome (Chr) 8, on the basis of the PCR analysis of a microsatellite in an interspecific backcross. Linkage and genetic distances were established for four loci by analysis of 192 (or 222) meiotic events and indicated the following gene order: (centromere)-Es-1-11.7 cM-Tat-8.3 cM-Actsk-1-0.5 cM-Aprt. Mapping of ACTSK to human Chr 1 and of TAT and APRT to human Chr 16 demonstrates the existence of a new short region of homology between mouse Chr 8 and human Chr 1. Intermingling on this scale between human and mouse chromosomal homologies that occurred during evolution creates disorders in comparative linkage studies.  相似文献   

14.
Phenol, a major pollutant in several industrial waste waters is often used as a model compound for studies on biodegradation. This study investigated the anoxic degradation of phenol and other phenolic compounds by a defined mixed culture of Alcaligenes faecalis and Enterobacter species. The culture was capable of degrading high concentrations of phenol (up to 600 mg/l) under anoxic conditions in a simple minimal mineral medium at an initial cell mass of 8 mg/l. However, the lag phase in growth and phenol removal increased with increase in phenol concentration. Dissolved CO2 was an absolute requirement for phenol degradation. In addition to nitrate, nitrite and oxygen could be used as electron acceptors. The kinetic constants, maximum specific growth rate max; inhibition constant, K i and saturation constant, K s were determined to be 0.206 h–1, 113 and 15 mg phenol/l respectively. p-Hydroxybenzoic acid was identified as an intermediate during phenol degradation. Apart from phenol, the culture utilized few other monocyclic aromatic compounds as growth substrates. The defined culture has remained stable with consistent phenol-degrading ability for more than 3 years and thus shows promise for its application in anoxic treatment of industrial waste waters containing phenolic compounds.  相似文献   

15.
Summary The oxidation of several mono-hydric phenols by wild type and mutant strains of Pseudomonas aeruginosa T1 has been studied. The data suggest, that a non-specific enzyme sequence of the meta cleavage pathway is induced by all of these phenols, which can catalyze the oxidation of phenol and its analogues to pyruvate, a fatty acid and a carbonyl compound, according to the general scheme of Dagley et al. (1964). Mutants unable to grow on phenol (hydroxylase-negative), have been isolated, and they are also unable to grown on or oxidize the cresols and the xylenols. Revertants of these mutants regain the capacity to grow on all these phenols and are indistinguishable from the wild type. Induced-substrate relationships for the earlier enzymes of the pathway have been determined, e.g., phenol in addition to catechol and the methylcatechols is an inducer for catechol 2,3-oxygenase. Analysis of the enzymic content of cells grown in a variety of steadystate conditions shows (a) that the ratio of the specific activities of the phenol hydroxylase and catechol 2,3-oxygenase is constant for each of their analogous substrates; and (b) that induction and catabolite repression of catechol 2,3-oxygenase and the muconic semialdehyde hydrolyase are coordinate, but that control of the phenol hydroxylase is independent.Howard Hughes Medical Institute Investigator.  相似文献   

16.
The Na+/H+ exchanger is a widely distributed integral membrane protein that is responsible for pH regulation in mammalian tissues. We have cloned and analyzed the NHE1 isoform of the mouse genomic Na+/H+exchanger. A clone from a mouse genomic library contained the NHE1 promoter region and the 5-untranslated region. It also contained the first 121 amino acids of the coding region of the Na+/H+ exchanger. A splice site occurred after amino acid 121, at the same region as in the human NHE1 gene. The deduced amino terminal coding sequence was 76 and 88% identical to the human and rat NHE1 sequences respectively. The 5-untranslated region was highly homologous to that of other species and two minicistrons contained in the human Na+/H+ exchanger were present in the mouse sequence. The results show that the deduced protein sequence of the mouse NHE1 gene has a high level of homology with other species and that the splice site of the first intron is conserved. These results suggest that the first large intron may play an important role in the NHE1 gene expression.  相似文献   

17.
Comamonas testosteroni strain R5 is a phenol-degrading bacterium which expresses a phenol-oxygenating activity that is characterized by low K s (the apparent half-saturation constant in Haldane's equation) and low K SI (the apparent inhibition constant) values. We have now cloned the gene cluster encoding a phenol hydroxylase (phcKLMNOP) and its cognate regulator (phcR) from strain R5. Transformation of Pseudomonas aeruginosa PAO1c (Phenol Catechol+) with pROR502, a derivative of pRO1614 containing the cloned genes, confers the ability to grow on phenol as the sole carbon source. The K s and K SI values for the phenol-oxygenating activity of PAO1c(pROR502) are almost identical to those of strain R5, suggesting that the phcKLMNOP genes encode the major phenol hydroxylase in strain R5. A phylogenetic analysis shows the phenol hydroxylase from strain R5 to be more closely related to toluene/benzene-2-monooxygenase (Tb2m) from Pseudomonas sp. JS150 than to the phenol hydroxylases from P. putida CF600 and BH, or to the phenol hydroxylase from Ralstonia eutropha E2. Analysis of the substrate specificity of PAO1c(pROR502) and PAO1c derivatives expressing phenol hydroxylase from P. putida BH or from R. eutropha E2 indicates that these phenol hydroxylases catalyze the oxidation not only of phenol and cresols but also of toluene and benzene. Received: 29 March 1999 / Accepted: 18 July 1999  相似文献   

18.
Genomic structure of the mouse apurinic/apyrimidinic endonuclease gene   总被引:2,自引:0,他引:2  
A mammalian apurinic/apyrimidinic endonuclease (AP endonuclease) is known to have two distinct functional domains. One domain is responsible for regulating the activity of Fos/Jun proto-oncogene products to bind to DNA at specific recognition sites. The other domain which is highly conserved from bacteria to mammals, is responsible for repairing DNA damage caused by ionizing radiation, oxidative damage, and alkylating agents. This study reports on the isolation and characterization of the genomic structure of the mouse AP endonuclease gene (Apex). The genomic sequence of the Apex gene was 2.14 kb in length and contained four exons. Exon 1 contained a 0.24-kb untranslated 5 region upstream of the initiation codon. Consensus sequences for two CAAT boxes and a GC box were found upstream of the end of exon 1. A polymorphism was noted in the untranslated region of exon 1 in a comparison of a number of mouse strains. These data indicate that the 5 end of the mouse gene (Apex) differs from the previously isolated human gene (Ape), which has five exons and an untranslated region between exons 1 and 2. Data are also presented that suggest the presence of two pseudogenes in the mouse.The nucleotide sequence data reported in this paper has been submitted to the GeneBank data library, and the accession number is U12273.  相似文献   

19.
Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His6PheA1 and His6PheA2 were purified and its catalytic activity characterized. His6PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His6PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His6PheA1 and His6PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction.  相似文献   

20.
CD19 is a B lymphocyte cell-surface marker that is expressed early during pre-B-cell differentiation with expression persisting until terminal differentiation into palsma cells. CD19 is a member of Ig gnee superfamily with two extreacellular Ig-like domains separated amino acid cytoplasmic domain. In this study, Southern blot analysis revelaed that the human and mouse CD19 genes were compact single copy genes. Both the human and mouse CD19 genes were isolated and the nucleotide sequences flanking each exon were determined. Both genes were composed of 15 exons and spanned 8 kilobases (kb) of DNA in human and 6 kb in mouse. The positions of exon-intron boundaries were identical between human and mouse and correlated with the putative functional domains of the CD19 protein. The 200 bp region 5 of the putative translation initiation AUG codon as well conserved in sequence between human and mouse and contained potential trasncription regulatory elements. In addition, the 3 untranslated regions (UT) of the CD19 genes following the termination codon were conservedf in sequence. The high level conservation of nucleotide sequences between species in all exons and 5 and 3 UT suggests that expression of the CD19 gene may be regulated in a similar fashion in human and mouse.The nucleotide sequence database reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers: human CD19 gnee, M62544 to M62550; mouse CD19 gene, M62551 to M62553.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号