首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.  相似文献   

2.
Microbiologists are challenged to explain the origins of enormous numbers of bacterial species worldwide. Contributing to this extreme diversity may be a simpler process of speciation in bacteria than in animals and plants, requiring neither sexual nor geographical isolation between nascent species. Here, we propose and test a novel hypothesis for the extreme diversity of bacterial species—that splitting of one population into multiple ecologically distinct populations (cladogenesis) may be as frequent as adaptive improvements within a single population''s lineage (anagenesis). We employed a set of experimental microcosms to address the relative rates of adaptive cladogenesis and anagenesis among the descendants of a Bacillus subtilis clone, in the absence of competing species. Analysis of the evolutionary trajectories of genetic markers indicated that in at least 7 of 10 replicate microcosm communities, the original population founded one or more new, ecologically distinct populations (ecotypes) before a single anagenetic event occurred within the original population. We were able to support this inference by identifying putative ecotypes formed in these communities through differences in genetic marker association, colony morphology and microhabitat association; we then confirmed the ecological distinctness of these putative ecotypes in competition experiments. Adaptive mutations leading to new ecotypes appeared to be about as common as those improving fitness within an existing ecotype. These results suggest near parity of anagenesis and cladogenesis rates in natural populations that are depauperate of bacterial diversity.  相似文献   

3.
Lineage, or true ‘species’, trees may differ from gene trees because of stochastic processes in molecular evolution leading to gene‐tree heterogeneity. Problems with inferring species trees because of excessive incomplete lineage sorting may be exacerbated in lineages with rapid diversification or recent divergences necessitating the use of multiple loci and individuals. Many recent multilocus studies that investigate divergence times identify lineage splitting to be more recent than single‐locus studies, forcing the revision of biogeographic scenarios driving divergence. Here, we use 21 nuclear loci from regional populations to re‐evaluate hypotheses identified in an mtDNA phylogeographic study of the Brown Creeper (Certhia americana), as well as identify processes driving divergence. Nuclear phylogeographic analyses identified hierarchical genetic structure, supporting a basal split at approximately 32°N latitude, splitting northern and southern populations, with mixed patterns of genealogical concordance and discordance between data sets within the major lineages. Coalescent‐based analyses identify isolation, with little to no gene flow, as the primary driver of divergence between lineages. Recent isolation appears to have caused genetic bottlenecks in populations in the Sierra Madre Oriental and coastal mountain ranges of California, which may be targets for conservation concerns.  相似文献   

4.
We present a complete phylogeny of macroperforate planktonic foraminifer species of the Cenozoic Era (∼65 million years ago to present). The phylogeny is developed from a large body of palaeontological work that details the evolutionary relationships and stratigraphic (time) distributions of species‐level taxa identified from morphology (‘morphospecies’). Morphospecies are assigned to morphogroups and ecogroups depending on test morphology and inferred habitat, respectively. Because gradual evolution is well documented in this clade, we have identified many instances of morphospecies intergrading over time, allowing us to eliminate ‘pseudospeciation’ and ‘pseudoextinction’ from the record and thereby permit the construction of a more natural phylogeny based on inferred biological lineages. Each cladogenetic event is determined as either budding or bifurcating depending on the pattern of morphological change at the time of branching. This lineage phylogeny provides palaeontologically calibrated ages for each divergence that are entirely independent of molecular data. The tree provides a model system for macroevolutionary studies in the fossil record addressing questions of speciation, extinction, and rates and patterns of evolution.  相似文献   

5.
A gene tree is an evolutionary reconstruction of the genealogical history of the genetic variation found in a sample of homologous genes or DNA regions that have experienced little or no recombination. Gene trees have the potential of straddling the interface between intra- and interspecific evolution. It is precisely at this interface that the process of speciation occurs, and gene trees can therefore be used as a powerful tool to probe this interface. One application is to infer species status. The cohesion species is defined as an evolutionary lineage or set of lineages with genetic exchangeability and/or ecological interchangeability. This species concept can be phrased in terms of null hypotheses that can be tested rigorously and objectively by using gene trees. First, an overlay of geography upon the gene tree is used to test the null hypothesis that the sample is from a single evolutionary lineage. This phase of testing can indicate that the sampled organisms are indeed from a single lineage and therefore a single cohesion species. In other cases, this null hypothesis is not rejected due to a lack of power or inadequate sampling. Alternatively, this null hypothesis can be rejected because two or more lineages are in the sample. The test can identify lineages even when hybridization and lineage sorting occur. Only when this null hypothesis is rejected is there the potential for more than one cohesion species. Although all cohesion species are evolutionary lineages, not all evolutionary lineages are cohesion species. Therefore, if the first null hypothesis is rejected, a second null hypothesis is tested that all lineages are genetically exchangeable and/or ecologically interchangeable. This second test is accomplished by direct contrasts of previously identified lineages or by overlaying reproductive and/or ecological data upon the gene tree and testing for significant transitions that are concordant with the previously identified lineages. Only when this second null hypothesis is rejected is a lineage elevated to the status of cohesion species. By using gene trees in this manner, species can be identified with objective, a priori criteria with an inference procedure that automatically yields much insight into the process of speciation. When one or more of the null hypotheses cannot be rejected, this procedure also provides specific guidance for future work that will be needed to judge species status.  相似文献   

6.
The phylogenetic relationships of seven goose species and two of the subspecies representing the genus Anser were studied by approximately 1180 bp of mitochondrial DNA tRNAglu, control region and tRNAphe sequences. Despite obvious morphological and behavioural affinities among the species, their evolutionary relationships have not been studied previously. The small amount of genetic differentiation observed in the mitochondrial DNA indicates an extremely close evolutionary relationship between the Anser species. The sequence divergences between the species (0.9–5.5%) are among the lowest reported for avian species with speciation events of Anser geese dating to late Pliocene and Pleistocene. The species grouped into four mtDNA lineages: (1) snow and Ross’ goose, (2) greylag goose, (3) white‐fronted goose, and (4) bean, pink‐footed and lesser white‐fronted goose. The phylogenetic relationships of the most closely related species, bean, pink‐footed and lesser white‐fronted goose, indicate a period of rapid cladogenesis. The poor agreement between morphological relationships and the phylogenetic relationships indicated by mtDNA sequences implies that either ancestral polymorphism and lineage sorting, hybridization and introgression or convergent evolution has been involved.  相似文献   

7.
Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species’ habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below‐ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species‐rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil . A time‐calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species–area–age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long‐term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area‐ and age‐dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna.  相似文献   

8.
In this study we reconstruct phylogenies for deep sea amphipods from the North Atlantic in order to test hypotheses about the evolutionary mechanisms driving speciation in the deep sea. We sequenced five genes for specimens representing 21 families. Phylogenetic analyses showed incongruence between the molecular data and morphological taxonomy, with some morphologically distinct taxa showing close molecular similarity. Approximate dating of nodes based on available calibration suggested adaptation to the deep sea around the Cretaceous-Palaeogene boundary, with three identified lineages within the deep-sea radiation dating to the Eocene–Oligocene transition. Two of those lineages contained species currently classified in multiple families. We reconstructed ancestral nodes based on the mouthpart characters that define trophic guilds (also used to establish the current taxonomy), and show a consistent transition at the earliest node defining the deep-sea lineage, together with increasing diversification at more recent nodes within the deep-sea lineage. The data suggest that the divergence of species was adaptive, with successive diversification from a non-scavenging ancestor to ‘opportunistic’, ‘obligate’ and ‘specialised’ scavengers. We propose that the North Atlantic species studied provide a strong case for adaptive evolution promoted by ecological opportunity in the deep sea.  相似文献   

9.
Abstract:  At least two predominating modes of evolution have been proposed for the Early Tithonian oppeliid ammonite genus Semiformiceras , including phyletic transformation of a single lineage ( S. darwini – S. semiforme – S. fallauxi ) and, most recently, a bifurcating or cladogenetic model of speciation. We discuss methodological obstacles in past studies that have focused on specific modes of evolution, and offer a reanalysis of the morphological data first presented by Cecca and Rouget [ Palaeontology , 49 , 1069–1080] using the stratocladistic software StrataPhy. The present analysis utilizes 11 ammonite taxa and 15 characters (14 morphological and one stratigraphic) and assesses all previous phylogenetic hypotheses, including those that recruit OTUs in ancestral or 'nodal' positions, without excluding evolutionary modes. The results cast doubt on the monophyly of S. darwini , S. semiforme and S. fallauxi , but do not follow completely the direct anagenetic progression proposed by stratophenetic hypotheses. We conclude that stratocladistics is a helpful tool for elucidating the extent of anagenesis and cladogenesis in extinct lineages owing to its capacity to reconstruct phylograms in their temporal framework, and to assess the distinctness and monophyly, not just of clades but of the OTUs themselves. Ultimately, this study addresses the novel utility of computer-assisted stratocladistic analysis in assessing evolutionary modes beyond the reach of traditional cladistic-based methodologies.  相似文献   

10.
以支系和进化主干的视角看待某一类群的系统发育地位更有利于将前进进化与分支进化的认识相结合.关于蝽类昆虫在生命树中的支系位置,近年来积累的证据已经在对于若干节点的认识上有了新的观点.随着现生类群生命树的构建以及化石类群与现生类群系统发育关系的整合,每个支系所经过的系统发育历程将逐渐变得清晰,并对相关的个体发育研究具有一定参考价值.本文致力于将近10年来的各种主流意见更迭完整地体现在对于蝽类昆虫支系地位的认识上.  相似文献   

11.
The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species‐rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum (“DB‐lineage”), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host (“GW‐lineage”). Between two populations of the DB‐lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.  相似文献   

12.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

13.
The debate about the biological species concept - a review   总被引:1,自引:0,他引:1  
The importance of the species concept in biology has led to a continuing debate about the definition of species. This paper summarizes the recent literature in relation to the ‘biological species concept’ (MAYR 1942). Among the general attributes demanded, possible limitations of the universality and applicability of a species definition are discussed. Three different areas of criticism of the biological species concept are considered: 1. The impracticability of the criterion of reproductive isolation. The demand for more practical criteria is rejected, because reproductive isolation is seen as the factor that produces and maintains species as discrete entities in nature. 2. The inapplicability to non-bisexual organisms. A brief survey of modes of uniparental reproduction and their relative importance suggests that obligatory apomicts are of little evolutionary significance. 3. The inapplicability to multidimensional situations. Despite practical difficulties, the biological species concept is held to apply to organisms separated in space. The impossibility to delimit species in time by reproductive isolation is recognized. Out of two ways to divide continuous evolutionary lineages in time, the phylogenetic approach, which considers only speciation events (cladogenesis), is preferred as it is more objective. A list of recently published alternative definitions of species, none of which is found acceptable, is given. It is concluded that the biological species concept needs not be changed or dismissed on the basis of the discussed criticisms.  相似文献   

14.
Tanyproctini (Melolonthinae) is a large group of chafers within the pleurostict Scarabaeidae that shows an enormous morphological diversity and variation. However, their morphology based definition appears to be mainly based on presumably plesiomorphic characters. Here, we investigate the phylogeny of this interesting lineage with a three‐gene data set using partial gene sequences of 28S rRNA, cytochrome c oxidase I (cox1) and 16S rRNA (rrnL). Our data set comprised 191 species of all major lineages of pleurostict scarabs. Combined analyses of the 2,070 base pairs alignment with maximum‐likelihood and Bayesian tree inference always recovered Tanyproctini to be highly polyphyletic. Tests of an alternative topology with constrained monophyly of Tanyproctini using CONSEL and IQ‐TREE were not found to be more likely than the unconstrained tree topology. Instead, Tanyproctini was split into six independent lineages under the current taxon sampling that were scattered throughout diverse parts of the pleurostict tree. The fact that numerous smaller chafer lineages exist beside several evolutionary successful and large lineages, highlights the complexity of the pleurosticts’ evolutionary history. The resulting tree topologies imply the need for a thorough revision of tribal classification within Melolonthinae lineages to accommodate the polyphyly of Tanyproctini. However, a revision of classification would be premature due to low support of most relevant branches, instable tree topologies among different tree searches, and due to a still very incomplete representation of Tanyproctini lineages.  相似文献   

15.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

16.
The ability to disperse over long distances can result in a high propensity for colonizing new geographic regions, including uninhabited continents, and lead to lineage diversification via allopatric speciation. However, high vagility can also result in gene flow between otherwise allopatric populations, and in some cases, parapatric or divergence‐with‐gene‐flow models might be more applicable to widely distributed lineages. Here, we use five nuclear introns and the mitochondrial control region along with Bayesian models of isolation with migration to examine divergence, gene flow, and phylogenetic relationships within a cosmopolitan lineage comprising six species, the blue‐winged ducks (genus Anas), which inhabit all continents except Antarctica. We found two primary sub‐lineages, the globally‐distributed shoveler group and the New World blue‐winged/cinnamon teal group. The blue‐winged/cinnamon sub‐lineage is composed of sister taxa from North America and South America, and taxa with parapatric distributions are characterized by low to moderate levels of gene flow. In contrast, our data support strict allopatry for most comparisons within the shovelers. However, we found evidence of gene flow from the migratory, Holarctic northern shoveler A. clypeata and the more sedentary, African Cape shoveler A. smithii into the Australasian shoveler A. rhynchotis, although we could not reject strict allopatry. Given the diverse mechanisms of speciation within this complex, the shovelers and blue‐winged/cinnamon teals can serve as an effective model system for examining how the genome diverges under different evolutionary processes and how genetic variation is partitioned among highly dispersive taxa.  相似文献   

17.
Sexual selection has been hypothesized to promote speciation, but evidence relating sexual selection to differences in speciation rates among taxa is equivocal. We note that evolutionary changes in ornaments are the link connecting sexual selection to speciation, and that ornament evolution is influenced by many factors so that its relationship with the strength of sexual selection may not be linear. We test if the evolution of ornamental coloration in Carduelis finches is related with speciation and if more ornamented lineages speciate more. We found that coloration evolves with a speciational pattern, but we found no evidence that the evolutionary changes associated with speciation are predominantly gains in ornamentation. The speciational pattern was found for both carotenoid- and melanin-based coloration, suggesting that traits putatively under stronger sexual selection by female choice (carotenoid coloration) are not the sole ones facilitating reproductive isolation. We conclude that in the genus Carduelis the evolutionary lability of ornaments influences speciation more than the strength of sexual selection, and we suggest that ornament lability should be considered as a possible causal factor in studies comparing cladogenesis among taxa.  相似文献   

18.
The detailed Neogene and Quaternary paleoclimatic reconstructions now available provide a means to test how species respond to environmental change. Paleontologic studies of marine organisms show that climatic change causes evolution (via cladogenesis and anagenesis), ecophenotypic variation, migration, morphologic stasis and extinction. Evolution during climatic change is a rare event relative to the number of climatic cycles that have occurred, but climate-related environmental barriers, usually temperature, may play an important role in the isolation of populations during allopatric speciation.  相似文献   

19.
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today.  相似文献   

20.
Sympatric speciation remains controversial. ‘Sympatry’ originally meant “in the same geographical area”. Recently, evolutionists have redefined ‘sympatric speciation’ non‐spatially to require panmixia (m = 0.5) between a pair of demes before onset of reproductive isolation. Although panmixia is a suitable starting point in models of speciation, it is not a useful definition of sympatry in natural populations, because it becomes virtually impossible to find or demonstrate sympatry in nature. The newer, non‐spatial definition fails to address the classical debate about whether natural selection within a geographic overlap regularly causes speciation in nature, or whether complete geographic isolation is usually required. We therefore propose a more precise spatial definition by incorporating the population genetics of dispersal (or ‘cruising range’). Sympatric speciation is considerably more likely under this spatial definition than under the demic definition, because distance itself has a powerful structuring effect, even over small spatial scales comparable to dispersal. Ecological adaptation in two‐dimensional space often acts as a ‘magic trait’ that causes pleiotropic reductions of gene flow. We provide examples from our own research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号