首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The electrophysiological and anatomical consequences of diurnal changes in screening pigment position were investigated in the apposition eye of the portunid crabScylla serrata. Intracellular recordings revealed that the acceptance angles of dark-adapted photoreceptors enlarged up to four-fold at night compared with photoreceptors dark-adapted in the day. Furthermore, while light adaptation at night caused acceptance angles to narrow, dark adaptation in the day caused no significant broadening of angles. These electrophysiological changes correlated with pigment movements in the eye observed both histologically and in the deep pseudopupil. It is found that the distal pigment cells change diurnally so that the field-stop which these cells form in front of the photoreceptors is opened in the night and closed in the day time.One feature of the diurnal rhythm is that it prevents photoreceptor fields of view enlarging when eyes are dark adapted in the day. InScylla, photoreceptor fields of view take tens of minutes to narrow upon exposure of crabs to light at night. By preventing a similar broadening in the day, the diurnal rhythm may enable animals suddenly leaving dark refuges to be pre-adapted to daylight. To a range of species which utilise refuges such a mechanism would be of significant advantage, especially after disturbance by predators.We are grateful to Prof. G.A. Horridge for constant encouragement and to Drs. S.B. Laughlin, M. Wilson, S. Shaw and M.F. Land for helpful advice.  相似文献   

2.
Gardens with nectar sources and larval host plants have been proposed to stem the decline in butterfly abundance caused by habitat loss. However, no study has provided evidence that gardens benefit butterflies. We examined the use of natural sites and gardens in the San Francisco bay area by the butterfly, Battus philenor. We found that natural sites were more likely to attract adult B. philenor, received more oviposition, and had higher juvenile survival than gardens sites. Butterflies were more likely to be present in gardens with established populations of the host plant, Aristolochia californica, growing in the sun. Battus philenor are unlikely to visit gardens with host plants planted within the past 7 years. Gardens between the ages of 8–40 years received oviposition, but did not always support completion of larval development of B. philenor. In gardens with host plants over 40 years of age, B. philenor consistently survived from egg to the adult stage. Natural enemy induced mortality of eggs did not differ between garden and natural sites, but overall egg survival was lower in gardens than at natural sites. It is unlikely that gardens serve as 'refugia' for B. philenor in years when populations in natural sites experience low survival or low fecundity. Even in gardens capable of supporting larvae to maturity, the density of eggs and survival rates were lower than in natural populations of the host plant suggesting that gardens were not optimal habitats. Therefore, without evidence that juvenile abundance and survival rates in gardens matches or exceeds that in natural sites, it is most likely that gardens act as population sinks for B. philenor.  相似文献   

3.
The visual system of nocturnal Hedyloidea butterflies was investigated for the first time, using light and electron microscopy. This study was undertaken to determine whether hedylids possess the classic superposition eye design characteristic of most moths, or apposition eyes of true butterflies (Papilionoidea), and, to gain insights into the sensory ecology of the Hedyloidea. We show that Macrosoma heliconiaria possesses a superposition-type visual mechanism, characterized by long cylindrical crystalline cones, a lack of corneal processes, 8 constricted retinular sense cells, rhabdoms separated from the crystalline cones forming a translucent 'clear zone', and tight networks of trachea that form a tapetum proximal to the retina and which also surround the rhabdoms to form a tracheal sheath. Dark-adapted individuals of M. heliconiaria, M. conifera, and M. rubidinarea exhibited distal retinular pigment migration, forming an eye glow. Correspondingly, light-exposure induced pigment to migrate proximally, causing the eye glow to be replaced by a dark pseudopupil. Other characteristics of the visual system, including relative eye size, facet size, and external morphology of the optic lobes, are mostly 'moth like' and correlate with an active, nocturnal lifestyle. The results are discussed in relation to the evolution of lepidopteran eyes, and the sensory ecology of this poorly understood butterfly superfamily.  相似文献   

4.
Observations of the infrared deep pseudopupil, optical determinations of the corneal nodal point, and histological methods were used to relate the visual fields of individual rhabdomeres to the array of ommatidial optical axes in four insects with open rhabdoms: the tenebrionid beetle Zophobas morio, the earwig Forficula auricularia, the crane fly Tipula pruinosa, and the backswimmer Notonecta glauca.The open rhabdoms of all four species have a central pair of rhabdomeres surrounded by six peripheral rhabdomeres. At night, a distal pigment aperture is fully open and the rhabdom receives light over an angle approximately six times the interommatidial angle. Different rhabdomeres within the same ommatidium do not share the same visual axis, and the visual fields of the peripheral rhabdomeres overlap the optical axes of several near-by ommatidia. During the day, the pigment aperture is considerably smaller, and all rhabdomeres share the same visual field of about two interommatidial angles, or less, depending on the degree of light adaptation. The pigment aperture serves two functions: (1) it allows the circadian rhythm to switch between the night and day sampling patterns, and (2) it works as a light driven pupil during the day.Theoretical considerations suggest that, in the night eye, the peripheral retinula cells are involved in neural pooling in the lamina, with asymmetric pooling fields matching the visual fields of the rhabdomeres. Such a system provides high sensitivity for nocturnal vision, and the open rhabdom has the potential of feeding information into parallel spatial channels with different tradeoffs between resolution and sensitivity. Modification of this operational principle to suit a strictly diurnal life, makes the contractile pigment aperture superfluous, and decreasing angular sensitivities together with decreasing pooling fields lead to a neural superposition eye.Abbreviations DPP deep pseudopupil - LMC large monopolar cell  相似文献   

5.
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.  相似文献   

6.
Eurypterids are a group of extinct chelicerates that ranged for over 200 Myr from the Ordovician to the Permian. Gigantism is common in the group; about 50% of families include taxa over 0.8 m in length. Among these were the pterygotids (Pterygotidae), which reached lengths of over 2 m and were the largest arthropods that ever lived. They have been interpreted as highly mobile visual predators on the basis of their large size, enlarged, robust chelicerae and forward-facing compound eyes. Here, we test this interpretation by reconstructing the visual capability of Acutiramus cummingsi (Pterygotidae) and comparing it with that of the smaller Eurypterus sp. (Eurypteridae), which lacked enlarged chelicerae, and other arthropods of similar geologic age. In A. cummingsi, there is no area of lenses differentiated to provide increased visual acuity, and the interommatidial angles (IOA) do not fall within the range of high-level modern arthropod predators. Our results show that the visual acuity of A. cummingsi is poor compared with that of co-occurring Eurypterus sp. The ecological role of pterygotids may have been as predators on thin-shelled and soft-bodied prey, perhaps in low-light conditions or at night.  相似文献   

7.
Summary The relationships between habitat depth, eye diameter relative to body length, and the dimensions of rhabdoms and crystalline cones have been examined for 13 species of three oceanic euphausiid genera with habitats ranging from near-surface waters to the deep-sea. Rate of eye growth decreases with depth. Longer rhabdoms may increase the visual sensitivity to point and extended light sources by an eye of a particular size with depth. Larger interommatidial angles suggest that visual acuity decreases at depth. Depth-related changes in euphausiid eyes are considered with respect to the probable roles of vision and bioluminescence in the deep-sea. Unusual features of the eyes of several species are described.  相似文献   

8.
Abstract The visual acuity of two species of tsetse flies, Glossina morsitans morsitans Westw. and Glossina pallidipes Aust., was investigated. Male G. morsitans eyes have an acute zone in the forward region, with large hexagonal lenses (mean minimum diameter, D=33, SE±0.7 μm), relatively small interommatidial angle (Δ(φ=1.08o) and angular receptive field of individual ommatidia (Δp) of not less than 1.14o. A narrow band of square lenses, with intermediate diameter and Δφ, merges with smaller hexagonal lenses in the periphery (24±0.7 μm), with relatively large interommatidial angle (Δφ=3.7o) and small angular receptive field (Δp = c. 1.6o). G.pallidipes eyes are similar, except that the lenses in the acute zone are larger than those of G.morsitans , in proportion to their larger body size. Female eyes are not significantly different from male eyes, except that they have a narrower region of binocular overlap (maximum for males = 24o, for females = 18o). The eye parameter (p=DΔφ) in the acute zone of male G.morsitans = 0.62, and in the peripheral zone = 1.56. These relatively high values are consistent with fast flight, visual detection of drift due to low wind speeds, mating chases and discrimination of cryptic host animals at high light intensities. The extended region of binocular overlap in males may serve as an early warning system of the approach of potential females. From our estimates, tsetse flies ought to be able to detect small objects against the sky c. 30 min before sunrise and after sunset, and to use their peripheral vision perhaps 15 min earlier and later than this.  相似文献   

9.
Warning coloration deters predators from attacking distasteful or toxic prey. Signal features that influence warning color effectiveness are not well understood, and in particular, we know very little about how effective short‐wavelength and iridescent colors are as warning color elements in nature and how warning signal effectiveness changes throughout the day. We tested the effect of these factors on predation risk in nature using specimens of the distasteful pipevine swallowtail butterfly, Battus philenor. B. philenor adults display both iridescent blue and diffusely reflecting orange components in their warning signal. We painted B. philenor wings to create five different model types: all‐black, only‐iridescent‐blue, only‐orange, iridescent‐blue‐and‐orange (intact signal), and matte‐blue‐and‐orange. We placed 25 models in each of 14 replicate field sites for 72 h and checked for attacks three times each day. Model type affected the likelihood of attack; only‐orange models were, the only model attacked significantly less than the all‐black model. Iridescence did not enhance or decrease warning signal effectiveness in our experiment because matte‐blue‐and‐orange models were attacked at the same rate as iridescent‐blue‐and‐orange models. Time of day did not differentially affect model type. Video recordings of attacks revealed that insectivorous birds were responsible. The results of this experiment, when taken with previous work, indicate that the response to blue warning coloration is likely dependent on predator experience and context, but that iridescence per se does not affect warning signals in a natural context.  相似文献   

10.
Knowledge of the temporal changes in genetic diversity and structure is important for identifying factors causing a decline in threatened insect species, and for establishing conservation programs for these species. Thus, there is recently an increasing interest in the restoration of genetic diversity in conservation programs using DNA data from historical museum specimens. For butterfly specimens, we measured the yields and fragment sizes of the extracted DNA and investigated the genotyping success probability of nine short microsatellite markers (allele size 73–191 bp). We used leg samples of specimens of a medium‐sized butterfly species, Melitaea ambigua (Lepidoptera; Nymphalidae), collected from the 1960s to the 2010s. The yields of specimen‐extracted DNA longer than 150 bp decreased with increasing specimen age. There were negative correlations between the genotyping success probability and specimen age for each of all microsatellite markers. A negative correlation was also observed between the genotyping success probability and allele size of each microsatellite marker. We conclude that short microsatellite markers and analysis of recently obtained specimens are particularly suitable for microsatellite analysis of butterfly specimens.  相似文献   

11.
Boreomysis megalops G.O. Sars were collected from 240 m depth using a protective cod-end, which shielded the eyes from light exposure. Animals were divided into groups which were exposed to darkness (DE) or to natural or artificial daylight (LE) for periods of 1–15 min or 4 h. Some animals were thereafter kept in aquaria under simulated habitat light conditions (light/dark cycles). The animals were observed in infra-red (IR) light. DE animals showed a vertical zonation behaviour in the laboratory similar to that obtained from sledge data: i.e. the animals stayed close to the bottom during daytime (light) and spread out vertically at night (darkness).LE individuals showed putative pathological changes both in zonation behaviour in the laboratory and in eye-morphology. The photoreceptor membranes of the six main retinula cells were damaged. The seventh cell was unaffected by light exposures. A correlation was found between the extent of damage to the eye and the degree of modification of vertical zonation behaviour. The groups exposed to the least light showed the smallest changes in zonation behaviour and eye-morphology. The light induced changes were not reversed even after 4 days in the aquarium under simulated habitat light conditions. In conclusion, deep living animals with well-developed and very light sensitive eyes should be protected from daylight during sampling and handling. IR light should be used for observation purposes.  相似文献   

12.
Photoreception in echinoderms has been known for over 200 years, but their visual capabilities remain poorly understood. As has been reported for some asteroids, the crown-of-thorns starfish (Acanthaster planci) possess a seemingly advanced eye at the tip of each of its 7–23 arms. With such an array of eyes, the starfish can integrate a wide field of view of its surroundings. We hypothesise that, at close range, orientation and directional movements of the crown-of-thorns starfish are visually guided. In this study, the eyes and vision of A. planci were examined by means of light microscopy, electron microscopy, underwater goniometry, electroretinograms and behavioural experiments in the animals’ natural habitat. We found that only animals with intact vision could orient to a nearby coral reef, whereas blinded animals, with olfaction intact, walked in random directions. The eye had peak sensitivity in the blue part (470 nm) of the visual spectrum and a narrow, horizontal visual field of approximately 100° wide and 30° high. With approximately 250 ommatidia in each adult compound eye and average interommatidial angles of 8°, crown-of-thorns starfish have the highest spatial resolution of any starfish studied to date. In addition, they have the slowest vision of all animals examined thus far, with a flicker fusion frequency of only 0.6–0.7 Hz. This may be adaptive as fast vision is not required for the detection of stationary objects such as reefs. In short, the eyes seem optimised for detecting large, dark, stationary objects contrasted against an ocean blue background. Our results show that the visual sense of the crown-of-thorns starfish is much more elaborate than has been thus far appreciated and is essential for orientation and localisation of suitable habitats.  相似文献   

13.
14.
Crabs have panoramic compound eyes, which can show marked regional specializations of visual acuity. These specializations are thought to be related to the particular features of the animal’s ecological environment. Modern knowledge on the neuroanatomy and neurophysiology of the crabs’ visual system mainly derives from studies performed in the grapsid crab Neohelice granulata (=Chasmagnathus granulatus). However, the organization of the visual sampling elements across the eye surface of this animal had not yet been addressed. We analyzed the sampling resolution across the eye of Neohelice by measuring the pseudopupil displacement with a goniometer. In addition, we measured the facet sizes in the different regions of the eye. We found that Neohelice possesses an acute band of high vertical resolution around the eye equator and an increase in horizontal sampling resolution and lenses diameter towards the lateral side of the eye. Therefore, the analysis of the optical apparatus indicates that this crab possesses greater visual acuity around the equator and at the lateral side of the eye. These specializations are compared with those found in different species of crabs and are discussed in connection to the particular ecological features of Neohelice’s habitat.  相似文献   

15.
We determined the optical axes of ommatidia in the wild-type female blowfly Calliphora by inspecting the deep pseudopupil in large parts of the compound eye. The resulting map of optical axes allowed us to evaluate the spatial resolution in different parts of the eye in terms of interommatidial angles as well as the density of optical axes, and to estimate the orientation of ommatidial rows along the hexagonal eye lattice. The optical axes are not homogeneously distributed over the eye. In the frontal visual field the spatial resolution is about two times higher than in its lateral part and about three times higher as compared to the eye's dorsal pole region. The orientation of the ommatidial rows along the eye lattice is not the same for different regions of the eye but changes in a characteristic way. The inter-individual variability in the orientation of the ommatidial rows is estimated to be smaller than 8 degrees . The characteristic arrangement of the ommatidial lattice is discussed as an adaptation for efficient evaluation of optic flow as induced during self-motions of the animal.  相似文献   

16.
Sensory information plays a critical role in determining an animal's behavior on both proximate and evolutionary timescales. Butterflies, like many other insects, use vision extensively over their lifetimes, and yet relatively little work has been published to date on their visual capabilities. We describe the visual system of a pierid butterfly, Colias eurytheme, with the ultimate goal of better understanding its role in shaping the behavior of this animal. We made several measurements: visual field dimensions, eye surface area, interommatidial angle (Deltaphi), facet diameter (D), and eye parameter (p). C. eurytheme had a large visual field and considerable regional variation in visual acuity, as inferred by Deltaphi and D. When compared to females, males had larger eye surface areas, smaller Deltaphi, and larger D in all regions except ventrally. Both sexes had proportionally large eye surface areas compared to other butterflies. Minimum p in males was small, indicating that some regions of their eyes may operate close to the diffraction limit. Finally, we found that both eye surface area and D scaled positively, but with negative allometry to body size. We discuss the relevance of these visual characteristics to the biology and behavior of C. eurytheme.  相似文献   

17.
Historical museum specimens are valuable for exploring population genetics and evolutionary questions because they can provide snapshots of morphological and genetic characteristics from populations over space and time. Unfortunately, DNA found in older museum specimens is frequently degraded, so obtaining genotypes from many individual samples necessary for rigorous molecular population genetic studies is challenging. Previous studies have varied greatly in their success at obtaining genotypes from older preserved insect material. Many well-intentioned collection curators have used research results showing poor preservation of DNA preserved in museum specimens to inform curatorial best practices, in some cases choosing not to allow DNA extraction by destructive sampling because, in their estimation, the likelihood of success would be low. Recent methodological advances in DNA extraction, amplification, and genotyping have allowed some researchers to include mid-19th century samples in molecular genetic analyses. Here we present a robust, high-throughput, and low-cost DNA extraction and genotyping protocol for historical insect specimens employing restriction digests of PCR products followed by high sensitivity electrophoresis. Using this technique, we obtained mitochondrial haplotypes for 100% of 48 New World Junonia butterfly specimens (Nymphalidae) ranging in age from pre-1813 to 1909 and show that the haplotype frequencies obtained are statistically indistinguishable from 20th-century and contemporary reference populations of Junonia (1632 specimens) matched by geographic region. As most extant insect specimens were collected after 1813, based on our findings we would expect that many or even most pinned specimens preserved in museum collections contain usable DNA for mitochondrial haplotyping.  相似文献   

18.
Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals’ cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark‐like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 900–904.  相似文献   

19.
Compound eyes and hunting behaviour of three species of the genus Asaphidion de Gozis 1886 (Coleoptera, Carabidae) have been investigated. All three have a fovea and binocular overlap in their frontal fields of vision. In the smallest species A. flavipes, the binocular overlap is largest and the foveal interommatidial angles are narrowest. All three species hunt by visual cues; A. flavipes is the most precise during the approach to the prey and during the attack. The mean size of its approach jerks and its critical distance prior to the attack are shorter than those of A. caraboides, and the scatter of these distances is much smaller. This leads to greater success in capturing fast fleeing prey (Collembola) on the soil surface.  相似文献   

20.
There are only a few published examinations of elephant visual acuity. All involved Asian elephants (Elephas maximus) and found visual acuity to be between 8′ and 11′ of arc for a stimulus near the tip of the trunk, equivalent to a 0.50 cm gap, at a distance of about 2 m from the eyes. We predicted that African elephants (Loxodonta africana) would have similarly high visual acuity, necessary to facilitate eye‐trunk coordination for feeding, drinking and social interactions. When tested on a discrimination task using Landolt‐C stimuli, one African elephant cow demonstrated a visual acuity of 48′ of arc. This represents the ability to discriminate a gap as small as 2.75 cm in a stimulus 196 cm from the eye. This single‐subject study provides a preliminary estimate of the visual acuity of African elephants. Zoo Biol 29:30–35, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号