共查询到2条相似文献,搜索用时 0 毫秒
1.
Jane F. Sampson Maggie Hankinson Shelley McArthur Sarah Tapper Margaret Langley Neil Gibson Colin Yates Margaret Byrne 《Botanical journal of the Linnean Society. Linnean Society of London》2015,179(2):319-334
The genetic structure of disjunct populations is determined by founding genetic properties, demographic processes, gene flow, drift and local selection. We aim to identify the genetic consequences of natural population disjunction at regional and local scales in Hakea oldfieldii using nuclear and plastid markers to investigate long‐term effective population sizes and gene flow, and patterns of diversity and divergence, among populations. Regional divergence was significant as shown by a consistent pattern in principal coordinates, neighbor‐joining and Bayesian analyses, but divergence at the local level was also significant with localized distribution of plastid haplotypes and populations clustering separately in Bayesian analyses. Historical, recent and first‐generation gene flow was low, suggesting that recent habitat fragmentation has not reduced gene migration significantly. Genetic bottlenecks were detected in three populations. Long‐term effective population size was significantly correlated with the number of alleles/locus and observed heterozygosity, but not with census population size, suggesting that the loss of diversity is associated with long‐term changes rather than recent fragmentation. Inbreeding coefficients were significant in only three populations, suggesting that the loss of diversity is linked to drift and bottlenecks associated with demographic processes (local extinction by fires) rather than inbreeding. Historical disjunction as a result of specific ecological requirements, contraction of habitats following drying during the Pleistocene, low gene flow and changes in population size are likely to have been important forces driving divergence through isolation by distance and drift. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 319–334. 相似文献
2.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals. 相似文献