首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Animal coloration can be the result of many interconnected elements, including the production of colour‐producing molecules de novo, as well as the acquisition of pigments from the diet. When acquired through the diet, carotenoids (a common class of pigments) can influence yellow, orange, and red coloration and enhanced levels of carotenoids can result in brighter coloration and/or changes in hue or saturation. We tested the hypothesis that dietary carotenoid supplementation changes the striking black and yellow coloration of the southern corroboree frog (Pseudophryne corroboree, Amphibia: Anura). Our dietary treatment showed no measurable difference in colour or brightness for black patches in frogs. However, the reflectance of yellow patches of frogs raised on a diet rich in carotenoids was more saturated (higher chroma) and long‐wave shifted in hue (more orange) compared to that of frogs raised without carotenoids. Interestingly, frogs with carotenoid‐poor diets still developed their characteristic yellow and black coloration, suggesting that their yellow colour patches are a product of pteridines manufactured de novo.  相似文献   

2.
Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high‐performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4‐oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4‐oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids.  相似文献   

3.
Birds display a tremendous variety of carotenoid-based colors in their plumage, but the mechanisms underlying interspecific variability in carotenoid pigmentation remain poorly understood. Because vertebrates cannot synthesize carotenoids de novo, access to pigments in the diet is one proximate factor that may shape species differences in carotenoid-based plumage coloration. However, some birds metabolize ingested carotenoids and deposit pigments that differ in color from their dietary precursors, indicating that metabolic capabilities may also contribute to the diversity of plumage colors we see in nature. In this study, we investigated how the acquisition and utilization of carotenoids influence the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). We supplemented the diet of captive goldfinches with red carotenoids to determine whether males, which are typically yellow in color, were capable of growing red plumage. We also deprived cardinals of red dietary pigments to determine whether they could manufacture red carotenoids from yellow precursors to grow species-typical red plumage. We found that American goldfinches were able to deposit novel pigments in their plumage and develop a striking orange appearance. Thus, dietary access to pigments plays a role in determining the degree to which goldfinches express carotenoid-based plumage coloration. We also found that northern cardinals grew pale red feathers in the absence of red dietary pigments, indicating that their ability to metabolize yellow carotenoids in the diet contributes to the bright red plumage that they display.  相似文献   

4.
Carotenoid‐based ornamental coloration has long been proposed to honestly signal quality due to its dependence on individual condition. Because migration can be one of the most stressful periods of an animal's annual cycle, developing colourful plumage may be particularly challenging for species in which migration and moult periods overlap or occur sequentially. The purpose of this study was to investigate pigmentary and condition‐dependent bases of carotenoid colour variation in a small migratory passerine, the golden‐crowned kinglet Regulus satrapa (Family Regulidae). We captured 186 male and female kinglets of various ages during fall migration in southwestern Ontario, Canada and recorded arrival date, body condition index, fat and pectoral muscle scores, wing mite infestation, and feather growth rate as measures of condition. We quantified crown coloration using reflectance spectrometry and analyzed feather carotenoids using high‐performance liquid chromatography. Yellow crown feathers of female kinglets contained only yellow hydroxycarotenoids, whereas orange feathers of males harboured a suite of eight carotenoid pigments. Males with longer wavelength orange crown hues deposited greater concentrations of ketocarotenoids, especially canthaxanthin. Female kinglets with longer wavelength crown hues and males with longer wavelength crown hues and more saturated crown coloration left for migration earlier in the year. Females with longer wavelength crown hues had fewer feather mites and tended to be in better condition. However, male kinglets with more saturated coloration possessed smaller pectoral muscles. This is the first study to identify plumage carotenoids in this North American bird family and to determine the pigmentary basis for both inter‐ and intrasexual colour variation. Our results provide further support for the condition‐dependence of carotenoid coloration and suggest that ornamental elaboration in both sexes may encode information about fall condition and migratory performance.  相似文献   

5.
Animals can acquire bright coloration using a variety of pigmentary and microstructural mechanisms. Reptiles and amphibians are known to use two types of pigments - pterins and carotenoids - to generate their spectrum of colorful red, orange, and yellow hues. Because both pigment classes can confer all of these hues, the relative importance of pterins versus carotenoids in creating these different colors is not always apparent. We studied the carotenoid and pterin content of red and yellow dewlap regions in two neotropical anole species - the brown anole (Norops sagrei) and the ground anole (N. humilis). Pterins (likely drosopterins) and carotenoids (likely xanthophylls) were present in all tissues from all individuals. Pterins were more enriched in the lateral (red) region, and carotenoids more enriched in the midline (yellow) region in N. humilis, but pterins and carotenoids were found in similar concentrations among lateral and midline regions in N. sagrei. These patterns indicate that both carotenoid and pterin pigments are responsible for producing color in the dichromatic dewlaps of these two species, and that in these two species the two pigments interact differently to produce the observed colors.  相似文献   

6.
Many birds use carotenoid pigments to acquire rich red, orange, and yellow coloration in feathers and bare parts that is used as a signal of mate quality. Because carotenoids are derived from foods, much attention has been paid to the role of diet in generating color variation both within and among avian species. Less consideration has been given to physiological underpinnings of color variability, especially among species. Here, I surveyed published literature (e.g. captive feeding studies) on carotenoid assimilation in six bird species and completed additional controlled carotenoid-supplementation experiments in two others to consider the ability of different taxa to extract carotenoids from the diet in relation to phylogeny and coloration. I found that, for a given level of carotenoids in the diet, passerine birds (zebra finch, Taeniopygia guttata; house finch, Carpodacus mexicanus; American goldfinch, Carduelis tristis; society finch, Lonchura domestica) exhibit higher levels of carotenoids in circulation than non-passerines like gamebirds (domestic chicken, Gallus domesticus; red junglefowl, Gallus gallus; Japanese quail, Coturnix coturnix; red-legged partridge, Alectoris rufa). This difference in carotenoid accumulation is likely due to interspecific variation in micelle, chylomicron, or lipoprotein concentrations or affinities for xanthophyll carotenoids. Passerine birds more commonly develop carotenoid-based colors than do birds from ancient avian lineages such as Galliformes, and the physiological differences I uncover may explain why songbirds especially capitalize on carotenoid pigments for color production. Ultimately, because we can deconstruct color traits into component biochemical, physical, and physiological parts, avian color signals may serve as a valuable model for illuminating the proximate mechanisms behind interspecific variation in signal use in animals.  相似文献   

7.
Many birds acquire carotenoid pigments from foods and deposit these pigments into feathers and bare‐parts to become sexually attractive, but little work has been done on the interindividual and temporal variability in the types and amounts of carotenoids that free‐ranging individuals have available for use in coloration or other functions (e.g., in immunomodulation). To address this issue, we studied intra‐annual variation in plasma carotenoid profiles of juvenile and adult white‐winged crossbills Loxia leucoptera of both sexes. Adult male crossbills exhibit bright red carotenoid‐based plumage pigmentation, whereas females uniformly display drab yellow feather coloration and juvenile males only occasionally display some orange or pink color. Yellow xanthophylls (e.g., lutein, zeaxanthin) were predominant in plasma of birds from both sexes and age classes throughout the year. Plasma xanthophylls levels tended to be highest in the summer, when crossbills increase seed consumption for breeding as well as supplement their diet with insects. Blood accumulation of three other, less common plasma carotenoids‐β‐cryptoxanthin, rubixanthin, and gazaniaxanthin‐varied in a highly season‐, sex‐, and age‐dependent fashion. These carotenoids were virtually absent in juvenile or adult female plasma at all times of year and were only present in male plasma, at higher concentrations in adults than juveniles, during the period of feather growth (Sept.–Nov.). These pigments have been reported as valuable precursors of the metabolically derived red pigments (e.g., 3‐hydroxy‐echinenone, 4‐oxo‐rubixanthin, and 4‐oxo‐gazaniaxanthin, respectively) that appear in the plumage of male crossbills. These findings suggest that male crossbills either adopt a season‐specific foraging strategy to acquire foods rich in these pigments at the time they are needed to develop red coloration, or have a unique physiological ability to metabolically produce these pigments or absorb them from food during molt, in order to maximize color production.  相似文献   

8.
Carotenoid-based sexual coloration is the classic example of an honest signal of mate quality. Animals cannot synthesize carotenoid pigments and ultimately depend on dietary sources. Thus, in carotenoid-poor environments, carotenoid coloration may be a direct indicator of foraging ability and an indirect indicator of health and vigour. Carotenoid coloration may also be affected, more directly, by parasites in some species. Carotenoids are not, however, the only conspicuous pigments available to animals. Pteridine pigments, with similar spectral properties, are displayed in the exoskeletons and wings of insects, the irides of birds and the skins of fishes, lizards and amphibians. Unlike carotenoids, pteridines are synthesized de novo by animals. We report that the orange spots that male guppies (Poecilia reticulata) display to females contain red pteridine pigments (drosopterins) in addition to carotenoids. We also examined the relationship between drosopterin production by males and carotenoid availability in the field. The results contrasted sharply with the hypothesis that males use drosopterins to compensate for carotenoid scarcity: males used more, not less, drosopterins in streams with higher carotenoid availability. The positive association between drosopterin use and carotenoid availability could reflect the costs of drosopterin synthesis or it could be a consequence of females preferring a particular pigment ratio or hue. Male guppies appear to use drosopterin pigments in a manner that dilutes, but does not eliminate, the indicator value of carotenoid coloration.  相似文献   

9.
1. Sexually selected traits are expected to vary seasonally, with the maximal expression of the character being evident during mate choice; however, the mechanisms controlling or regulating such traits are generally poorly known.
2. Carotenoid pigments responsible for bright red or yellow coloration in the feathers, skin or other integumentary structures of birds are generally believed to vary seasonally because of diet.
3. Variation in carotenoid-dependent skin colour between winter and spring (mating season) was investigated, as was variation in plasma carotenoids across the breeding season in captive American Kestrels, Falco sparverius , fed a uniform diet.
4. Kestrels were more brightly coloured in the mating period than in winter, and plasma carotenoid concentrations declined from the time of mating to the rearing of young.
5. Although carotenoid levels were highly sexually dimorphic during mating and laying, males and both breeding and non-breeding females all had similar levels by the incubation period, and the pattern of variation over time suggests rheostatic regulation.
6. These results suggest kestrels may have the ability to regulate (rather than merely control) their colour physiologically, the variation in colour and carotenoids is consistent with that expected of a sexually selected trait, and the loss of colour after breeding may suggest a trade-off between the show and health functions of carotenoids.  相似文献   

10.
Indicator models of sexual selection suggest that signal honesty is maintained via costs of ornament expression. Carotenoid-based visual signals are a well-studied example, as carotenoids may be environmentally limited and impact signaler health. However, not all bright yellow, orange and red ornaments found in vertebrates are carotenoid-based; pteridine pigments may also produce these colors. We examine the contribution of carotenoid and pteridine pigments to the orange reproductive color of female striped plateau lizards (Sceloporus virgatus). This color ornament reliably indicates female mate quality, yet costs maintaining signal honesty are currently unknown. Dietary carotenoid manipulations did not affect orange color, and orange skin differed from surrounding white skin in drosopterin, not carotenoid, content. Further, orange color positively correlated with drosopterin, not carotenoid, concentration. Drosopterin-based female ornaments avoid the direct trade-offs of using carotenoids for ornament production vs egg production, thus may relax counter-selection against color ornament exaggeration in females. Direct experimentation is needed to determine the actual costs of pteridine-based ornaments. Like carotenoids, pteridines influence important biological processes, including immune and antioxidant function; predation and social costs may also be relevant.  相似文献   

11.
Carotenoid pigments are a common source of red, orange, and yellow coloration in vertebrates. Animals cannot manufacture carotenoids and therefore must obtain them in their diet to produce carotenoid-based coloration. Male great frigatebirds (Fregata minor) display a bright red inflated gular pouch as part of their elaborate courtship display. The basis of this coloration until now has not been investigated. Using high-performance liquid chromatography (HPLC), we investigated the types and concentrations of carotenoids that great frigatebirds circulate in their plasma and whether male gular pouch coloration was carotenoid-based. Great frigatebird plasma collected during the breeding season contained three carotenoid pigments in dilute concentrations-tunaxanthin, zeaxanthin, and astaxanthin-with astaxanthin accounting for nearly 85% of the carotenoids present. Astaxanthin was the only carotenoid present in gular pouch tissue, but the concentration is the highest reported for any carotenoid-pigmented avian tissue. Throat pouch reflectance curves were measured with a UV-VIS spectrophotometer, revealing a complex pattern of one UV peak (approx. 360 nm), two absorption valleys (approx. 542 and 577 nm), followed by a plateau at approx 630 nm. The reflectance curve suggests a role for additional pigments, in particular hemoglobin, in the production of color in this ornament.  相似文献   

12.
The evolution and maintenance of conspicuous animal traits and communication signals have long fascinated biologists. Many yellow–red conspicuous traits are coloured by carotenoid pigments, and in some species they are displayed at a very young age. In nestling birds, the functions and proximate mechanisms of carotenoid‐pigmented traits are probably different and not as well known as those of adults. Here we investigated how Montagu's harrier (Circus pygargus) nestlings within structured families used a limited resource, carotenoid pigments, and whether they used these for increasing coloration (deposition in integuments) or for mounting a response to a phytohaemagglutinin (PHA) challenge, which measures pro‐inflammatory potential and aspects of cellular immune responsiveness. We manipulated carotenoid availability, using dietary carotenoid supplementations, and show that when supplemented, nestlings primarily allocated supplemental carotenoids to increase their coloration, irrespective of their sex, but depending of their position within the brood. Responses to PHA challenge were condition‐dependent, but depending on carotenoid availability. Moreover, how nestlings allocated carotenoids depended on their rank within the brood, which in turn influenced their level of carotenoid limitation (first‐hatched nestlings being less constrained than later‐hatched nestlings). We discuss why nestlings would use supplemental carotenoids for increasing bare parts coloration rather than for responding to a PHA challenge, and the potential benefits for doing so in a parent–offspring communication context. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 13–24.  相似文献   

13.
Trinidad guppies (Poecilia reticulata) are distributed along an environmental gradient in carotenoid availability that limits the carotenoid content of the orange spots of males. The amount of synthetic red pteridines (drosopterins) in the orange spots covaries with the carotenoid content, such that the ratio of the two types of pigments is roughly conserved across streams. Carotenoids and drosopterins have different spectral properties and thus the ratio of the two types of pigments affects the shape of the orange spot reflectance spectrum. Geographic conservation of the carotenoid:drosopterin ratio suggests that males may be under selection to maintain a particular hue. We tested this hypothesis by comparing the pigmentation and coloration of guppies from six streams in the field to that of second-generation descendants of the same populations raised on three dietary carotenoid levels in the laboratory. The results show clearly that the geographic variation in drosopterin production is largely genetic and that the hue of the orange spots is conserved among populations in the field, relative to the laboratory diet groups. This is a countergradient pattern because genetic differences between populations in drosopterin production mask the effect of carotenoid availability on the hue of the orange spots. The potential for countergradient sexual selection to contribute to reproductive isolation between populations is discussed.  相似文献   

14.
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers—yellow-shafted and red-shafted flickers—to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.  相似文献   

15.
Carotenoid pigments are responsible for many examples of sexuallyattractive red, orange, and yellow coloration in animals andplay an important role in antioxidant and immune defenses. Becausevertebrates cannot synthesize carotenoids, limited dietary availabilitymay impose a trade-off between maintaining ornamental colorationand health. We used an experimental approach to test the carotenoidtrade-off hypothesis in the fighting fish Betta splendens, byexamining whether carotenoid allocation strategies differ amongconspecifics that exhibit a gradient of body coloration fromblue to red. We found that male redness is underlain by carotenoidsand that females preferred to associate with red males overblue males, suggesting a sexually-selected advantage to beingred. Moreover, we found strong experimental support for thecarotenoid trade-off hypothesis, as individuals that variedin color did not appear to allocate carotenoids equally to bothimmune response and coloration. Redder fish given supplementalcarotenoids increased in both immune response (to a phytohemagglutinationchallenge) and redness compared with controls. In contrast,bluer fish given supplemental carotenoids did not become morered but instead benefited immunologically more so than eithercontrol or redder supplemented fish. These results enhance ourunderstanding of the evolution and plasticity of carotenoidmobilization and utilization pathways in animals.  相似文献   

16.
Dietary carotenoids predict plumage coloration in wild house finches   总被引:10,自引:0,他引:10  
Carotenoid pigments are a widespread source of ornamental coloration in vertebrates and expression of carotenoid-based colour displays has been shown to serve as an important criterion in female mate choice in birds and fishes. Unlike other integumentary pigments, carotenoids cannot be synthesized; they must be ingested. Carotenoid-based coloration is condition-dependent and has been shown to be affected by both parasites and nutritional condition. A controversial hypothesis is that the expression of carotenoid-based coloration in wild vertebrates is also affected by the amount and types of carotenoid pigments that are ingested. We tested this carotenoid-limitation hypothesis by sampling the gut contents of moulting house finches and comparing the concentration of carotenoid pigments in their gut contents with the colour of growing feathers. We found a positive association: males that ingested food with a higher concentration of carotenoid pigments grew brighter ornamental plumage. We also compared the concentration of carotenoids in the gut contents of males from two subspecies of house finches with small and large patches of carotenoid-based coloration. Consistent with the hypothesis that carotenoid access drives the evolution of carotenoid-based colour displays, males from the population with limited ornamentation had much lower concentrations of carotenoids in their gut contents than males from the population with extensive ornamentation. These observations support the idea that carotenoid intake plays a part in determining the plumage brightness of male house finches.  相似文献   

17.
Energetic constraints on expression of carotenoid-based plumage coloration   总被引:12,自引:0,他引:12  
Carotenoid pigments are used by many bird species as feather colorants, creating brilliant yellow, orange, and red plumage displays. Such carotenoid-based plumage coloration has been shown to function as an honest signal that is used in female mate choice. Despite recent interest in carotenoid-based ornamental traits, the basis for individual variation in expression of carotenoid-based plumage coloration remains incompletely understood. I tested the hypothesis that, independent of carotenoid access, food stress during molt would cause reduced expression of carotenoid pigmentation. I fed molting male House Finches Carpodacus mexicanus seed diets supplemented with either the red carotenoid pigment canthaxanthin or the yellow/orange carotenoid pigment β-cryptoxanthin (in the form of tangerine juice). Within each diet treatment, one group of males was given restricted food access and the other group was given unrestricted food access. Carotenoid supplements were placed in water so carotenoid access was controlled independent of food access. The results indicated a strong effect of both carotenoid access and food access on color display. Some males in the β-cryptoxanthin-supplemented group grew red plumage, suggesting that they can metabolically modify yellow pigments into red pigments, but no bird supplemented with β-cryptoxanthin grew plumage as red as birds supplemented with canthaxanthin. Males in the unrestricted food groups grew redder and more intensely pigmented plumage than males in the restricted food groups. These observations provide the best evidence to date of an energetic cost of carotenoid utilization in the generation of colorful plumage.  相似文献   

18.
Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under-studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non-avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad-scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.  相似文献   

19.
A combination of structural and pigmentary components is responsible for many of the colour displays of animals. Despite the ubiquity of this type of coloration, neither the relative contribution of structures and pigments to variation in such colour displays nor the relative effects of extrinsic factors on the structural and pigment-based components of such colour has been determined. Understanding the sources of colour variation is important because structures and pigments may convey different information to conspecifics. In an experiment on captive American goldfinches Carduelis tristis, we manipulated two parameters, carotenoid availability and food availability, known to affect the expression of carotenoid pigments in a full-factorial design. Yellow feathers from these birds were then analysed in two ways. First, we used full-spectrum spectrometry and high-performance liquid chromatography to examine the extent to which variation in white structural colour and total carotenoid content was associated with variation in colour properties of feathers. The carotenoid content of yellow feathers predicted two colour parameters (principal component 1--representing high values of ultraviolet and yellow chroma and low values of violet-blue chroma-and hue). Two different colour parameters (violet-blue and yellow chroma) from white de-pigmented feathers, as well as carotenoid content, predicted reflectance measurements from yellow feathers. Second, we determined the relative effects of our experimental manipulations on white structural colour and yellow colour. Carotenoid availability directly affected yellow colour, while food availability affected it only in combination with carotenoid availability. None of our manipulations had significant effects on the expression of white structural colour. Our results suggest that the contribution of microstructures to variation in the expression of yellow coloration is less than the contribution of carotenoid content, and that carotenoid deposition is more dependent on extrinsic variability than is the production of white structural colour.  相似文献   

20.
Although many animals use carotenoids to produce bright yellow, orange, and red colors, an increasing number of studies have found that other pigments, such as melanins, may also be used to produce bright colors. Yet, almost nothing is known about the evolutionary history of this colorful melanin use. We used reflectance spectrometry to determine whether colors in New World orioles were predominantly due to carotenoids, colorful melanins, or a mixture of both. We then used ancestral state reconstruction to infer the directionality of any pigment changes and to test for phylogenetic signal. We found that three oriole taxa likely switched from carotenoid- to melanin-based colors. Several other oriole taxa apparently gained localized melanin coloration, or had coloration that seemed to be produced by a mixture of carotenoids and melanins. We also found little phylogenetic signal on the use of carotenoids or melanins to produce color. However, all pigment changes occurred within one of three major clades of the oriole genus, suggesting there may be signal at deeper phylogenetic levels. These repeated independent switches between carotenoid and melanin colors are surprising in light of the important signaling role that color pigments (especially carotenoids) are thought to play across a wide range of taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号