首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
Male–male competition over fertilization can select for harmful male genital structures that reduce the fitness of their mates, if the structures increase the male's fertilization success. During secondary contact between two allopatrically formed, closely related species, harmful male genitalia may also reduce the fitness of heterospecific females given interspecific copulation. We performed a laboratory experiment to determine whether the extent of genital spine exaggeration in Callosobruchus chinensis males affects the fitness of C. maculatus females by injuring their reproductive organs. We found that males with more exaggerated genital spines were more likely to injure the females via interspecific copulation and that the genital injury translated into fecundity loss. Thus, as predicted, reproductive interference by C. chinensis males on C. maculatus females is mediated by exaggeration of the genital spine, which is the evolutionary consequence of intraspecific male–male competition. Harmful male traits, such as genital spines, might generally affect the extent of interaction between closely related species.  相似文献   

2.
Sexual conflict over mating can result in sex-specific morphologies and behaviours that allow each sex to exert control over the outcome of reproduction. Genital traits, in particular, are often directly involved in conflict interactions. Via genital manipulation, we experimentally investigated whether genital traits in red-sided garter snakes influence copulation duration and formation of a copulatory plug. The hemipenes of male red-sided garter snakes have a large basal spine that inserts into the female cloaca during mating. We ablated the spine and found that males were still capable of copulation but copulation duration was much shorter and copulatory plugs were smaller than those produced by intact males. We also anaesthetized the female cloacal region and found that anaesthetized females copulated longer than control females, suggesting that female cloacal and vaginal contractions play a role in controlling copulation duration. Both results, combined with known aspects of the breeding biology of red-sided garter snakes, strongly support the idea that sexual conflict is involved in mating interactions in this species. Our results demonstrate the complex interactions among male and female traits generated by coevolutionary processes in a wild population. Such complexity highlights the importance of simultaneous examination of male and female traits.  相似文献   

3.
    
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes.  相似文献   

4.
Rapid evolution has led to a large diversity in the sizes and morphology of male genitals across taxa, but the mechanisms driving this evolution remain controversial. In this study, we investigated the function of male genital sclerites in the adzuki bean beetle (Callosobruchus chinensis) and compared the length and morphology of genital sclerites between two populations that vary in their degree of polyandry. We found that the length of male genital sclerites was negatively correlated with copulation duration but positively correlated with the speed of matings with multiple females. Additionally, we found that the average length and number of genital sclerite spines of males from the more polyandrous population were larger than those from the less polyandrous population. We suggest that the genital sclerite of male adzuki bean beetles evolved by sexual selection, and a larger genital sclerite has a selective advantage because it allows for rapid copulations with multiple females.  相似文献   

5.
    
Secondary sexual devices in female insects, primarily abdominal modifications, appear to function as a means of thwarting coercive mating attempts by males or are, in rare cases, sexually selected adaptations. Female ground weta, Hemiandrus pallitarsis (Orthoptera: Anostostomatidae), have an elaborate elbowed device on the underside of the mid-abdomen. Experimental removal of this accessory organ shows that it does not increase the probability of mating as predicted by the thwart-copulation hypothesis. Instead, removal prevents copulation, thus demonstrating that it is a secondary copulatory device. The male attaches to the organ both at the beginning of copulation and at the end, when he positions himself to adhere a spermatophylax food gift onto the mid-ventral region of his mate. The female accessory organ does not function to manipulate eggs or larvae (females provide care to their single clutch of offspring) and is unlikely to be a copulatory structure that prevents hybridization. The great extent of the modification of the ventral abdominal segments of H. pallitarsis females compared to other Hemiandrus species is consistent with a history of sexual selection on the accessory organ. Taken together, these results and the finding that the length of the accessory organ of H. pallitarsis correlates with female fecundity, suggest that this structure evolved under sexual selection to acquire nuptial gifts from males.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 463–469.  相似文献   

6.
    
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

7.
    
In most species with internal fertilization, male genitalia evolve faster than other morphological structures. This holds true for genital titillators, which are used exclusively during mating in several bushcricket subfamilies. Several theories have been proposed for the sexual selection forces driving the evolution of internal genitalia, especially sperm competition, sexually antagonistic coevolution (SAC), and cryptic female choice (CFC). However, it is unclear whether the evolution of genitalia can be described with a single hypothesis or a combination of them. The study of species‐specific genitalia action could contribute to the controversial debate about the underlying selective evolutionary forces. We studied female mating behaviors in response to experimentally modified titillators in a phylogenetically nested set of four bushcricket species: Roeseliana roeselii, Pholidoptera littoralis littoralis, Tettigonia viridissima (of the subfamily Tettigoniinae), and Letana inflata (Phaneropterinae). Bushcricket titillators have several potential functions; they stimulate females and suppress female resistance, ensure proper ampulla or spermatophore attachment, and facilitate male fixation. In R. roeselii, titillators stimulate females to accept copulations, supporting sexual selection by CFC. Conversely, titillator modification had no observable effect on the female's behavior in T. viridissima. The titillators of Ph. l. littoralis mechanically support the mating position and the spermatophore transfer, pointing to sexual selection by SAC. Mixed support was found in L. inflata, where manipulation resulted in increased female resistance (evidence for CFC) and mating failures by reduced spermatophore transfer success (evidence for SAC). Sexual selection is highly species‐specific with a mosaic support for either cryptic female choice or sexually antagonistic coevolution or a combination of both in the four species.  相似文献   

8.
    
Male genital traits exhibit extraordinary interspecific phenotypic variation. This remarkable and general evolutionary trend is widely considered to be the result of sexual selection. However, we still do not have a good understanding of whether or how individual genital traits function in different competitive arenas (episodes of sexual selection), or how different genital traits may interact to influence competitive outcomes. Here, we use an experimental approach based on high‐precision laser phenotypic engineering to address these outstanding questions, focusing on three distinct sets of micron‐scale external (nonintromittent) genital spines in male Drosophila kikkawai Burla (Diptera: Drosophilidae). Elimination of the large pair of spines on the male secondary claspers sharply reduced male ability to copulate, yet elimination of the other sets of spines on the primary and secondary claspers had no significant effects on copulation probability. Intriguingly, both the large spines on the secondary claspers and the cluster of spines on the primary claspers were found to independently promote male competitive fertilization success. Moreover, when large and small secondary clasper spines were simultaneously shortened in individual males, these males suffered greater reductions in fertilization success relative to males whose traits were altered individually, providing evidence for synergistic effects of external genital traits on fertilization success. Overall, the results are significant in demonstrating that a given genital trait (the large spines on the secondary claspers) can function in different episodes of sexual selection, and distinct genital traits may interact in sexual selection. The results offer an important contribution to evolutionary biology by demonstrating an understudied selective mechanism, operating via subtle trait interactions in a post‐insemination context, by which genital traits may be co‐evolving.  相似文献   

9.
    
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

10.
    
The hypothesis that the elaborated genitalia of male insects serve to improve insemination success were tested using the ground beetle Carabus insulicola. To enhance variation in genital size, the genital hooks of experimental males were cut, and these males were then mated with virgin females. Logistic regression showed that the length of the male genital hook affected insemination success. Males with a shorter genital hook tended not to deposit spermatophores at the proper site, and failed to transfer sperm into the spermatheca. Therefore, the male genital hook serves to increase insemination success by depositing a spermatophore at the site where sperm are likely to be transferred. The duration of copulation and post-copulatory guarding may also be explained by these determinants. Stepwise regressions indicated that the occurrence of ejaculation, and the location of the spermatophore determined the duration of copulation and post-copulatory guarding, respectively.  相似文献   

11.
Mating rate and fitness in female bean weevils   总被引:7,自引:3,他引:7  
Females of most animal taxa mate with several males during theirlifespan. Yet our understanding of the ultimate causes of polyandryis incomplete. For example, it is not clear if and in what sensefemale mating rates are optimal. Most female insects are thoughtto maximize their fitness by mating at an intermediate rate,but it has been suggested that two alternative fitness peaksmay be observed if multiple costs and benefits interact in determiningthe relationship between mating rate and fitness. We studiedthe relationship between female fitness and mating rate in thebean weevil, Callosobruchus maculatus (Coleoptera: Bruchidae),a species in which several distinct direct effects of matingto females have been reported. Our results show that femalefitness, measured as lifetime offspring production, is lowestat an intermediate mating rate. We suggest that this patternis the result of multiple direct benefits to mating (e.g., spermreplenishment and hydration/nutrition effects) in combinationwith significant direct costs to mating (e.g., injury from malegenitalia). Females mating at low rates may efficiently minimizethe costs of mating, whereas females mating at high rates insteadmay maximize the benefits of mating. If common, the existenceof bimodal relationships between female mating rate and fitnessmay help explain the large intra- and interspecific variationin the degree of polyandry often seen in insects.  相似文献   

12.
    
The Drosophila melanogaster species complex consists of four species: D. melanogaster, D. simulans, D. sechellia and D. mauritiana. To identify these closely related species, researchers often examine the male genitalia, especially species‐specific shapes of the posterior process, as the most reliable and easily observable character. However, compared to genetic aspects, the evolutionary significance of the posterior process and other genital parts remains largely unexplained. By comparing genital coupling among these species, we revealed that the posterior processes, which are hidden under the female abdominal tergite VII when genital coupling is established, mesh with different parts of the intersegmental membrane between the tergite VIII and the oviscapts and that this membrane region broadens in a species‐specific manner. Furthermore, in D. simulans and D. sechellia, this membrane region is likely to incur wounds from the sharply pointed tip of the posterior process. On the basis of the use and functions of these and other genital parts, we discuss possible evolutionary forces underlying the diversification of genitalia in this group.  相似文献   

13.
In Pieris napi, female fitness increases with number of matings, but wild females mate at an unexpectedly low rate. From a sexual conflict perspective this could be because males manipulate female remating, or alternatively, because wild females experience costs associated with remating which are not applicable under laboratory conditions. To get an indication which sex controls remating and/or the different sexes’ relative costs and benefits of remating, we here test whether female mating frequency is affected by male courtship intensity. We found no effect on female mating frequency or lifespan. This indicates that (i) females control remating and their optimal mating frequency is lower compared to males, or (ii) males can manipulate female remating. We argue that both these alternatives may apply simultaneously to P. napiand that they are inseparable.  相似文献   

14.
    
Theory predicts that costly secondary sexual traits will evolve heightened condition dependence, and many studies have reported strong condition dependence of signal and weapon traits in a variety of species. However, although genital structures often play key roles in intersexual interactions and appear to be subject to sexual or sexually antagonistic selection, few studies have examined the condition dependence of genital structures, especially in both sexes simultaneously. We investigated the responses of male and female genital structures to manipulation of larval diet quality (new versus once‐used mung beans) in the bruchid seed beetle Callosobruchus maculatus. We quantified effects on mean relative size and static allometry of the male aedeagus, aedeagal spines, flap and paramere and the female reproductive tract and bursal spines. None of the male traits showed a significant effect of diet quality. In females, we found that longer bursal spines (relative to body size) were expressed on low‐quality diet. Although the function of bursal spines is poorly understood, we suggest that greater bursal spine length in low‐condition females may represent a sexually antagonistic adaptation. Overall, we found no evidence that genital traits in C. maculatus are expressed to a greater extent when nutrients are more abundant. This suggests that, even though some genital traits appear to function as secondary sexual traits, genital traits do not exhibit heightened condition dependence in this species. We discuss possible reasons for this finding.  相似文献   

15.
    
In decorated crickets, Gryllodes sigillatus, the spermatophore that a male transfers at mating includes a gelatinous spermatophylax that the female consumes, delaying her removal of the sperm‐filled ampulla. Male fertilization success increases with the length of time females spend feeding on the spermatophylax, while females may benefit by prematurely discarding the spermatophylaxes of undesirable males. This sexual conflict should favour males that produce increasingly appealing spermatophylaxes, and females that resist this manipulation. To determine the genetic basis of female spermatophylax feeding behaviour, we fed spermatophylaxes to females of nine inbred lines and found that female genotype had a major influence on spermatophylax feeding duration. The amino acid composition of the spermatophylax was also significantly heritable. There was a positive genetic correlation between spermatophylax feeding duration and the gustatory appeal of the spermatophylax. This correlation suggests that genes expressed in males that produce more manipulative spermatophylaxes are positively linked to genes expressed in females that make them more vulnerable to manipulation. Outbred females spent less time feeding on spermatophylaxes than inbred females, and thus showed greater resistance to male manipulation. Further, in a nonspermatophylax producing cricket (Acheta domesticus), females were significantly more prone to feeding on spermatophylaxes than outbred female Gryllodes. Collectively, these results suggest a history of sexually antagonistic coevolution over the consumption of nuptial food gifts.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Abstract.  1. Before copulation, male Panorpa cognata scorpionflies offer females a salivary secretion, which is consumed by the female during copulation. It has previously been demonstrated that this nuptial food gift functions as mating effort by increasing male attractiveness and by increasing ejaculate transfer during copulation.
2. In this study, the effect of saliva consumption on female reproductive output was investigated, and thus the possibility that nuptial food gifts also serve as paternal investment. The experimental design enabled the effect of nuptial gift consumption to be disentangled from other possible effects of multiple mating or increased copula duration.
3. The results showed that saliva consumption increases female egg production by on average 8% (4.5 eggs) per consumed salivary mass, whereas mean egg weight was not influenced.4. These results have important implications for the evolution and maintenance of both male nuptial gifts and female polyandry in this and other species.  相似文献   

17.
    
The expression of alternative reproductive tactics can be plastic and occur simultaneously depending on cues that vary spatially or temporally. For example, variation in resources and sexual selection intensity is expected to influence the pay‐off of each tactic and shape the decision of which tactic to employ. Males of the nuptial gift‐giving spider Pisaura mirabilis can adopt three tactics: offering a genuine prey gift, a ‘worthless’ non‐nutritious gift or no gift. We hypothesized that resources and/or male body condition, and mating opportunity and sexual selection intensity, vary over the course of the mating season to shape the co‐existence of alternative traits. We measured these variables in the field over two seasons, to investigate the predictions that as the mating season progresses, (i) males become more likely to employ a gift‐giving tactic, and (ii) the likelihood of switching from worthless to genuine gifts increases. Prey availability increased over the season and co‐varied with the propensity of males to employ the gift‐giving tactic, but we found no support for condition‐dependent gift giving. Males responded to an increase in female availability by increasing their mating effort (gift production). Furthermore, the frequency of genuine gift use increased with sexual selection intensity, consistent with the assumption that sperm competition intensity increases with time. Our results suggest that the frequency of alternative tactics is shaped by seasonal changes in ecological factors and sexual selection. This leads to relaxed selection for the gift‐giving tactic early in the season when females are less choosy and resources more scarce, and increased selection for genuine gifts later in the season driven by mating opportunity and risk of sperm competition.  相似文献   

18.
During courtship and copulation, males of many insect species provide the female with a nuptial gift of a prey item or synthesized material. These gifts may be explained as a form of paternal investment by increasing female reproductive output, or in terms of mating effort by increasing male fertilization success. These explanations, while not mutually exclusive, are controversial. While experimental studies examine the maintenance of nuptial gifts in single species, comparative studies are required to indicate more general evolutionary trends. Male bushcrickets provide females with a nuptial gift, a spermatophylax, which is transferred to females at mating along with the sperm-containing ampulla. Analysis of comparative data of 28 species of bushcrickets (Orthoptera: Tettigoniidae), reveals that male spermatophore size (spermatophylax and ampulla weight) is positively correlated with female refractory period, which, in turn, correlates with male fertilization success. Moreover, gift size (the spermatophylax) covaries with ejaculate size (the ampulla), which is consistent with the hypothesis that it serves as a sperm protection device. In contrast, there is no significant correlation between any measure of female fecundity and male spermatophylax size. This indicates that the variation in spermatophore size among bushcrickets is better explained by a mating-effort function than a paternal investment function.  相似文献   

19.
Rapid divergence in external genital structures occurs in nearly all animal groups that practice internal insemination; explaining this pattern is a major challenge in evolutionary biology. The hypothesis that species‐specific differences in male genitalia evolved under sexual selection as courtship devices to influence cryptic female choice (CFC) has been slow to be accepted. Doubts may stem from its radical departure from previous ideas, observational difficulties because crucial events occur hidden within the female's body, and alternative hypotheses involving biologically important phenomena such as speciation, sperm competition, and male‐female conflicts of interest. We assess the current status of the CFC hypothesis by reviewing data from two groups in which crucial predictions have been especially well‐tested, Glossina tsetse flies and Roeseliana (formerly Metrioptera) roeselii bushcrickets. Eighteen CFC predictions have been confirmed in Glossina and 19 in Roeseliana. We found data justifying rejection of alternative hypotheses, but none that contradicted CFC predictions. The number and extent of tests confirming predictions of the CFC hypothesis in these species is greater than that for other generally accepted hypotheses regarding the functions of nongenital structures. By this criterion, it is reasonable to conclude that some genital structures in both groups likely involved sexual selection by CFC.  相似文献   

20.
A life-history perspective on strategic mating effort in male scorpionflies   总被引:2,自引:1,他引:2  
In species with high male mating effort, there is a trade-offbetween mating effort spent in a current mating and resourcesleft for future matings. Consequently, to maximize their reproductivesuccess, males have to invest strategically, saving resourcesin matings with low reproductive gain for future, more valuablematings. However, as males age, the expected future reproductivesuccess constantly declines. Thus, the importance of resource rationing may drastically change during a lifetime. Males ofthe scorpionfly Panorpa cognata offer females a costly nuptialgift before copulation, which functions as male mating effort.Resources for the production of these salivary masses are severelylimited for males in poor condition. We found that males investedmore in copulations with high-quality females than in copulationswith low-quality females. However, males ceased to discriminateas they became older. Old males, with a relative small numberof expected future matings, did not invest differentially incopulations with high- versus low-quality females. In copulationswith low-quality females, males invested more in late thanin initial matings, whereas in matings with high-quality females,time of mating had no influence on mating effort. These resultsimply that males adaptively change their resource allocationstrategy during the course of the season. Initial matings seemto be characterized by male prudence; in later matings, malesseem to adopt a more opportunistic mating strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号