首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant species distributed across terrestrial islands can show significant genetic divergence among populations if seed and pollen dispersal are restricted. We assessed the genetic connectivity between populations of Grevillea georgeana, restricted to seven disjunct inselbergs in semi‐arid Western Australia. The phylogeographical pattern and population genetics of populations were determined using sequence data from two plastid DNA intergenic spacers and ten nuclear microsatellite loci. The plastid DNA markers indicated high genetic differentiation among the majority of populations. Haplotypes were restricted to individual inselbergs, with the exception of two that were shared among three isolated populations that formed part of an elongated greenstone belt and that may be connected via inaccessible populations of G. georgeana. There was also strong differentiation within some of the populations, suggesting long‐term isolation and persistence of G. georgeana on these terrestrial islands. Overall, the genetic patterns suggest limited seed dispersal, with differentiation in the plastid DNA genome being driven by genetic drift. In contrast, pollen movement, although generally restricted, may occur between neighbouring populations, resulting in a pattern of isolation by distance in the nuclear markers. This potential for limited or no seed dispersal, but connectivity via pollen flow, should be considered, given that many of the inselbergs are under consideration for resource development. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 155–168.  相似文献   

2.
Many plant species have pollination and seed dispersal systems and evolutionary histories that have produced strong genetic structuring. These genetic patterns may be consistent with expectations following recent anthropogenic fragmentation, making it difficult to detect fragmentation effects if no prefragmentation genetic data are available. We used microsatellite markers to investigate whether severe habitat fragmentation may have affected the structure and diversity of populations of the endangered Australian bird‐pollinated shrub Grevillea caleyi R.Br., by comparing current patterns of genetic structure and diversity with those of the closely related G. longifolia R.Br. that has a similar life history but has not experienced anthropogenic fragmentation. Grevillea caleyi and G. longifolia showed similar and substantial population subdivision at all spatial levels (global F′ST = 0.615 and 0.454; Sp = 0.039 and 0.066), marked isolation by distance and large heterozygous deficiencies. These characteristics suggest long‐term effects of inbreeding in self‐compatible species that have poor seed dispersal, limited connectivity via pollen flow and undergo population bottlenecks because of periodic fires. Highly structured allele size distributions, most notably in G. caleyi, imply historical processes of drift and mutation were important in isolated subpopulations. Genetic diversity did not vary with population size but was lower in more isolated populations for both species. Through this comparison, we reject the hypothesis that anthropogenic fragmentation has impacted substantially on the genetic composition or structure of G. caleyi populations. Our results suggest that highly self‐compatible species with limited dispersal may be relatively resilient to the genetic changes predicted to follow habitat fragmentation.  相似文献   

3.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

4.
The Pleistocene climatic oscillations had profound effects on the demographic history and genetic diversification of plants in arid north-west China where some glacial refugia have been recognized. The genus Ixiolirion comprises three species, of which two, I. tataricum and I. songaricum (endemic), occur in China. In some locations they are sympatric. We investigated their population structure and population history in response to past climatic change using a sample of 619 individuals in 34 populations with nITS and ptDNA sequences. A significant genetic divergence between the two species was supported by a high level of pairwise genetic differentiation, very low gene flow, and phylogenetic analysis showing that I. songaricum haplotypes were monophyletic, whereas those of I. tataricum were polyphyletic. We found significant differentiation and phylogeographic structure in both species. The split of the two species was dated to the late Miocene (~7?Ma), but deep divergence occurred in the mid-late Quaternary. A similar haplotype distribution pattern was found in both species: one to two dominant haplotypes across most populations, with unique haplotypes in a few populations or a geographic group. The genetic diversity, haplotype number, and haplotype diversity decreased from the Yili Valley to the central Tianshan and Barluk Mountains. Additionally, ptDNA analysis showed that I. tataricum diversified in the eastern Tianshan and Barluk Mountains, which might be due to physical barriers to long distance seed dispersal such as desert. In conclusion, our results indicated that the Yili Valley was likely a glacial refuge for Ixiolirion in China, with postglacial dispersal from the Yili Valley eastward to the eastern Tianshan Mountains, and northward to the Barluk Mountains. The climatic changes in the Miocene and Pleistocene and geographic barriers are important factors driving species divergence and differentiation of Ixiolirion and other taxa.  相似文献   

5.
Widespread plant species are expected to maintain genetic diversity and gene flow via pollen and seed dispersal. Stature is a key life history trait that affects seed and potentially pollen dispersal, with limited stature associated with limited dispersal and greater genetic differentiation. We sampled Hill’s tabletop wattle (Acacia hilliana) and curry wattle (Acacia spondylophylla), two co‐distributed, widespread, Acacia shrubs of low stature, across the arid Pilbara region of north‐western Australia. Using chloroplast sequence and nuclear microsatellite data we evaluated patterns of population genetic and phylogeographic diversity and structure, demographic signals, ratios of pollen to seed dispersal, evidence for historical refugia, and association between elevation and diversity. Results showed strong phylogeographic (chloroplast, G ST = 0.831 and 0.898 for A. hilliana and A. spondylophylla, respectively) and contemporary (nuclear, F ST = 0.260 and 0.349 for A. hilliana and A. spondylophylla, respectively) genetic structure in both species. This indicates limited genetic connectivity via seed and pollen dispersal associated with Acacia species of small stature compared to taller tree and shrub acacias across the Pilbara bioregion. This effect of stature on genetic structure is superimposed on moderate levels of genetic diversity that were expected based on widespread ranges (haplotype diversity h = 25 and 12; nuclear diversity He = 0.60 and 0.47 for A. hilliana and A. spondylophylla, respectively). Contemporary genetic structure was congruent at the greater landscape scale, especially in terms of strong genetic differentiation among geographically disjunct populations in less elevated areas. Measures of diversity and connectivity were associated with traits of greater geographic population proximity, population density, population size, and greater individual longevity, and some evidence for range expansion in A. hilliana. Results illustrate that low stature is associated with limited dispersal and greater patterns of genetic differentiation for congenerics in a common landscape and highlight the complex influence of taxon‐specific life history and ecological traits to seed and pollen dispersal.  相似文献   

6.
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre‐ and post‐fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind‐pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre‐ and post‐fragmentation cohorts. Significant genetic structure was observed in pre‐fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post‐fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long‐term persistence of small remnant populations.  相似文献   

7.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

8.
Accurate estimation of connectivity among populations is fundamental for determining the drivers of population resilience, genetic diversity, adaptation and speciation. However the separation and quantification of contemporary versus historical connectivity remains a major challenge. This review focuses on marine angiosperms, seagrasses, that are fundamental to the health and productivity of temperate and tropical coastal marine environments globally. Our objective is to understand better the role of sexual reproduction and recruitment in influencing demographic and genetic connectivity among seagrass populations through an integrated multidisciplinary assessment of our present ecological, genetic, and demographic understanding, with hydrodynamic modelling of transport. We investigate (i) the demographic consequences of sexual reproduction, dispersal and recruitment in seagrasses, (ii) contemporary transport of seagrass pollen, fruits and seed, and vegetative fragments with a focus on hydrodynamic and particle transport models, and (iii) contemporary genetic connectivity among seagrass meadows as inferred through the application of genetic markers. New approaches are reviewed, followed by a summary outlining future directions for research: integrating seascape genetic approaches; incorporating hydrodynamic modelling for dispersal of pollen, seeds and vegetative fragments; integrating studies across broader geographic ranges; and incorporating non‐equilibrium modelling. These approaches will lead to a more integrated understanding of the role of contemporary dispersal and recruitment in the persistence and evolution of seagrasses.  相似文献   

9.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

10.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

11.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

12.
Abstract. Large‐scale disturbances, notably fire and grazing, structure grass and shrubland dynamics in semi‐arid environments. We studied early post‐fire succession in two burned grasslands, one unburned grassland, and one shrubland near the burned area. We observed three processes: (1) establishment of a ‘phantom’ community comprised of fugitive species. Although transient, these species increase diversity and recharge the seed bank before the next disturbance; (2) regeneration of the original community by persistence of resprouter species and by auto‐replacement; (3) early stages of invasion by seedlings of the shrub Fabiana imbricata, which germinate next to shrubland and create new F. imbricata patches. Weed invasion was principally due to the ruderal exotic species Verbascum thapsus from the nearby road verge and by rapid increase of Rumex acetosella cover, another exotic species present before the fire. Although post‐fire climatic conditions are particularly important in semi‐arid environments, succession depends greatly on the regeneration strategies and dispersal abilities of the species present in the burned area. The phantom community occurs only at the first stage of succession when there is little competition for resources. We could call this process ‘the race for occupation of the area’. The second stage, when competition for resources becomes progressively more important, could be called ‘the effort to maintain space’.  相似文献   

13.
This research was aimed to analyse the genetic diversity of Geraeocormobius sylvarum, a forest‐dwelling Neotropical harvestman with a disjunct distribution, separated by approximately 630 km of semi‐arid environments. The usefulness of a fragment of the cytochrome c oxidase subunit I (COI) mitochondrial gene as molecular marker was tested in 109 individuals. Results showed high levels of both haplotype and nucleotide diversity in populations corresponding to north‐eastern Argentina, the core area of the species range. A strong genetic structuring was detected, supported by both the phylogenetic trees and the haplotype network, with six identifiable haplogroups. Populations of the Yungas ecoregion did not show significant diversity levels, suggesting a putative recent introduction of the species into that region. The overall results suggest that the present genetic diversity of the species is consistent with past fragmentation events of the species range (in refuges?), probably during the Last Glacial Maximum. The COI gene was concluded to be a well‐suited marker to associate past environmental events with the high genetic diversity observed in this species.  相似文献   

14.
The influence of Pleistocene climatic cycles on Southern Hemisphere biotas is not yet well understood. Australia's eastern coastal margin provides an ideal setting for examining the relative influence of landscape development, sea level fluctuation, and cyclic climatic aridity on the evolution of freshwater biodiversity. We examined the impact of climatic oscillations and physical biogeographic barriers on the evolutionary history of the wide‐ranging Krefft's river turtle (Emydura macquarii krefftii), using range‐wide sampling (649 individuals representing 18 locations across 11 drainages) and analysis of mitochondrial sequences (~1.3‐kb control region and ND4) and nuclear microsatellites (12 polymorphic loci). A range of phylogeographic (haplotype networks, molecular dating), demographic (neutrality tests, mismatch distributions), and population genetic analyses (pairwise FST, analysis of molecular variance, Bayesian clustering analysis) were implemented to differentiate between competing demographic (local persistence vs. range expansion) and biogeographic (arid corridor vs. drainage divide) scenarios. Genetic data reveal population genetic structure in Krefft's river turtles primarily reflects isolation across drainage divides. Striking north‐south regional divergence (2.2% ND4 p‐distance; c. 4.73 Ma, 95% higher posterior density (HPD) 2.08–8.16 Ma) was consistent with long‐term isolation across a major drainage divide, not an adjacent arid corridor. Ancient divergence among regional lineages implies persistence of northern Krefft's populations despite the recurrent phases of severe local aridity, but with very low contemporary genetic diversity. Stable demography and high levels of genetic diversity are inferred for southern populations, where aridity was less extreme. Range‐wide genetic structure in Krefft's river turtles reflects contemporary and historical drainage architecture, although regional differences in the extent of Plio–Pleistocene climatic aridity may be reflected in current levels of genetic diversity.  相似文献   

15.
Studying the evolutionary history of trait divergence, in particular those related to dispersal capacity, is of major interest for the process of local adaptation and metapopulation dynamics. Here, we reconstruct the evolution of different alleles at the nuclear‐encoded mitochondrial NADP+‐dependent isocitrate dehydrogenase (mtIdh) locus of the ground beetle Pogonus chalceus that are differentially and repeatedly selected in short‐ and long‐winged populations in response to different hydrological regimes at both allopatric and sympatric scales along the Atlantic European coasts. We sequenced 2788 bp of the mtIdh locus spanning a ~7‐kb genome region and compared its variation with that of two supposedly neutral genes. mtIdh sequences show (i) monophyletic clustering of the short‐winged associated mtIDH‐DE haplotypes within the long‐winged associated mtIDH‐AB haplotypes, (ii) a more than tenfold lower haplotype diversity associated with the mtIDH‐DE alleles compared to the mtIDH‐AB alleles and (iii) a high number of fixed nucleotide differences between both mtIDH haplotype clusters. Coalescent simulations suggest that this observed sequence variation in the mtIdh locus is most consistent with a singular origin in a partially isolated subpopulation, followed by a relatively recent spread of the mtIDH‐DE allele in short‐winged populations along the Atlantic coast. These results demonstrate that even traits associated with decreased dispersal capacity can rapidly spread and that reuse of adaptive alleles plays an important role in the adaptive potential within this sympatric mosaic of P. chalceus populations.  相似文献   

16.
Aim We examined the genetic structure of Quercus garryana to infer post‐glacial patterns of seed dispersal and pollen flow to test the hypotheses that (1) peripheral populations are genetically distinct from core populations and from one another; (2) genetic diversity declines towards the poleward edge of the species’ range; and (3) genetic diversity in the chloroplast genome, a direct measure of seed dispersal patterns, declines more sharply with increasing latitude than diversity in the nuclear genome. We address our findings in the context of known historical oak distribution from pollen core data derived from previously published research. Location Oak–savanna ecosystems from southern Oregon, USA (core populations/non‐glaciated range) northward to Vancouver Island, British Columbia, Canada (peripheral populations/glaciated range). Methods We genotyped 378 trees from 22 sites with five chloroplast and seven nuclear microsatellite loci. For both sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance and generated Mantel correlograms to detect genetic and geographical distance correlations. For the nuclear markers, we also used a Bayesian approach to infer population substructure. Results There was a large degree of population differentiation revealed by six chloroplast haplotypes, with little (≤ 3) or no haplotype diversity within sites. Peripheral island locations shared the same, maternally inherited chloroplast haplotype, whereas locations in mainland Washington had greater haplotype diversity. In contrast, genetic diversity of the nuclear markers was high at all locations sampled. Populations clustered into two groups and were significantly positively correlated over large spatial scales (≤ 200 km), although allele richness decreased significantly with latitude. Population substructure was observed between core and peripheral populations because rare alleles were absent in peripheral localities and common allele frequencies differed. Main conclusions The observed pattern of chloroplast haplotype loss at the northern periphery suggests restricted seed dispersal events from mainland sites to peripheral islands. This pattern was unexpected, however, as refugial oak populations remained near the current post‐glacial range even during the Last Glacial Maximum. Using nuclear markers, we found high within‐population diversity and population differentiation only over large spatial scales, suggesting that pollen flow is relatively high among populations.  相似文献   

17.
Understanding how the scale of pollen transfer determines the outcome of matings is important evolutionarily and a key issue in restoration ecology. We tested the effects of pollen transfer distance for the self‐incompatible shrub Grevillea sphacelata using (1) open pollination and transfer among (2) near neighbours, (3) neighbouring subpopulations and (4) populations separated by c. 4 km. We used AFLP markers to test for evidence of genetic differentiation within and among populations. Patterns of seed initiation suggest that open pollinated flowers were pollen limited, although in one subpopulation open seed set was greater than that achieved with pollen from near neighbours or other subpopulations. We detected no other effects of pollen source on seed initiation or seed and seedling development. In contrast, our genetic survey revealed significant spatial autocorrelation to 5 m, moderate differentiation of populations separated by up to 4 km and significant isolation by distance > 16 km. Our data suggest that, although dispersal of pollen may typically be localized, gene flow prevents localized adaptation or co‐adaptation and we detected no effects of inbreeding depression. In a restoration context, our results imply that movement of seed between populations separated by 4 km will not have detrimental consequences, despite significant differentiation at neutral genetic markers, and may be beneficial in maintaining genetic diversity and evolutionary potential. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 290–302.  相似文献   

18.
Many plants regenerate after fire from a canopy‐stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16‐year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean tm = 1.00 ± 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14–63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.  相似文献   

19.
Aim The Chilean endemic Dioscorea biloba (Dioscoreaceae) is a dioecious geophyte that shows a remarkable 600 km north–south disjunction in the peripheral arid area of the Atacama Desert. Its restricted present‐day distribution and probable Neogene origin indicate that its populations have a history linked to that of the Atacama Desert, making this an ideal model species with which to investigate the biogeography of the region. Location Chile, Atacama Desert and peripheral arid area. Methods Two hundred and seventy‐five individuals from nine populations were genotyped for seven nuclear microsatellite loci, and plastid trnL–F and trnT–L sequences were obtained for a representative subset of these. Analyses included the estimation of genetic diversity and population structure through clustering, Bayesian and analysis of molecular variance analyses, and statistical parsimony networks of chloroplast haplotypes. Isolation by distance was tested against alternative dispersal hypotheses. Results Microsatellite markers revealed moderate to high levels of genetic diversity within populations, with those from the southern Limarí Valley showing the highest values and northern populations showing less exclusive alleles. Bayesian analysis of microsatellite data identified three genetic groups that corresponded to geographical ranges. Chloroplast phylogeography revealed no haplotypes shared between northern and southern ranges, and little haplotype sharing between the two neighbouring southern valleys. Dispersal models suggested the presence of extinct hypothetical populations between the southern and northern ranges. Main conclusions Our results are consistent with prolonged isolation of the northern and southern groups, mediated by the life‐history traits of the species. Significant isolation was revealed at both large and moderate distances as gene flow was not evident even between neighbouring valleys. Bayesian analyses of microsatellite and chloroplast haplotype diversity identified the southern area of Limarí as the probable area of origin of the species. Our data do not support recent dispersal of D. biloba from the southern range into Antofagasta, but indicate the fragmentation of an earlier wider range, concomitant with the Pliocene–Pleistocene climatic oscillations, with subsequent extinctions of the Atacama Desert populations and the divergence of the peripheral ones as a consequence of genetic drift.  相似文献   

20.
Ecosystem functionality is an increasingly important objective of ecological restoration. Despite this, a few studies have rigorously assessed reproductive functionality within restored plant populations, and it is largely assumed that pollinators follow restoration of plant communities—“build it and they will come.” Here, we applied an ecological genetic approach to determine the impact of spatial separation on mating in Banksia menziesii (Proteaceae), a dominant bird‐pollinated species of Banksia woodlands of Western Australia. All plants at three post‐mining restored sites (n = 72 [13 years old], n = 21 [8 years old], and n = 20 [9 years old]), as well as a sample from an adjacent natural reference site (n = 42), were genotyped at nine microsatellite loci. Seed set, mating system parameters, realized pollen dispersal through the assignment of paternity to seed, and avian pollinator species composition, abundance and behavior, were assessed. All patches displayed equivalent heterozygosity (He = 0.53–0.59) and very weak genetic divergence (FST ≤ 0.01). Seed of plants within restored sites showed complete outcrossing and relatively high seed set, 26% of which were sired by pollen donors located beyond the local patch. Similar abundance and movement of nectar‐feeding birds was observed in restored and natural sites, despite lower bird species diversity in the restored site, where a smaller, less aggressive species was dominant. Our results demonstrate the restitution of wide outcrossing in these restored Banksia patches within an active mine‐site, and suggest that restored bird‐pollinated Banksia populations are resilient to human impacts, due largely to their generalist pollinator requirements and highly‐mobile avian pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号