首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eph family of receptors, with 14 members in humans, makes up the largest group of receptor tyrosine kinases. These Eph receptors, along with their ligands, the 8 members of the ephrin family of ligands are involved in diverse developmental functions, including hindbrain development in vertebrates, tissue patterning, and angiogenesis. These Eph receptors and ephrin ligands have also been identified as important regulators in the development and progression of cancer. We have presented here a systematic and comprehensive investigation of the Eph/ephrin expression profiles of MCF-10A, MCF-7, and MDA-MB-231 cells representing normal breast, non-invasive breast tumor, and invasive tumor, respectively, based on their characteristic phenotypes in Matrigel matrix. The data have allowed us to correlate the gene expression profile with the cell phenotype that has potential application in tumor diagnostics. We demonstrate here that upregulation of EphA2, A7, A10, and ephrinA2 and B3 is likely involved in tumorigenesis and/or invasiveness, while downregulation of EphA1, A3, A4, A8, B3, B4, B6, and ephrinA1 and B1 may be particularly important in invasiveness. Based on these results we discuss the role of EphA2 and ephrinA1 combination in malignancy. The data have provided clues as to the importance of these molecules in the progression of breast cancer and specifically identified EphB6, a kinase-deficient receptor, which is downregulated in the most aggressive cell line, as reported for several other cancer types including neuroblastoma and melanoma suggesting its potential as a prognostic indicator in breast cancer as well.  相似文献   

2.
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin‐As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin‐A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin‐A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin‐A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino‐SC map compression, or through ephrin‐A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.  相似文献   

3.
Eph receptors and their membrane‐bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell‐adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand‐mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1‐dependent Rac1 activation and ephrinA1‐induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling .  相似文献   

4.
EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase   总被引:3,自引:0,他引:3  
Ephrin kinases and their ephrin ligands transduce repulsion of cells in axon guidance, migration, invasiveness, and tumor growth, exerting a negative signaling on cell proliferation and adhesion. A key role of their kinase activity has been confirmed by mutant kinase inactive receptors that shift the cellular response from repulsion to adhesion. Our present study aimed to investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in ephrinA1/EphA2 signaling. LMW-PTP, by means of dephosphorylation of EphA2 kinase, negatively regulates the ephrinA1-mediated repulsive response, cell proliferation, cell adhesion and spreading, and the formation of retraction fibers, thereby confirming the relevance of the net level of tyrosine phosphorylation of Eph receptors. LMW-PTP interferes with ephrin-mediated mitogen-activated protein kinase signaling likely through inhibition of p120RasGAP binding to the activated EphA2 kinase, thereby confirming the key role of mitogen-activated protein kinase inhibition by ephrinA1 repulsive signaling. We conclude that LMW-PTP acts as a terminator of EphA2 signaling causing an efficient negative feedback loop on the biological response mediated by ephrinA1 and pointing on tyrosine phosphorylation as the main event orchestrating the repulsive response.  相似文献   

5.
The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.  相似文献   

6.
The Eph family is thought to exert its function through the complementary expression of receptors and ligands. Here, we show that EphA receptors colocalize on retinal ganglion cell (RGC) axons with EphA ligands, which are expressed in a high-nasal-to-low-temporal pattern. In the stripe assay, only temporal axons are normally sensitive for repellent axon guidance cues of the caudal tectum. However, overexpression of ephrinA ligands on temporal axons abolishes this sensitivity, whereas treatment with PI-PLC both removes ephrinA ligands from retinal axons and induces a striped outgrowth of formerly insensitive nasal axons. In vivo, retinal overexpression of ephrinA2 leads to topographic targeting errors of temporal axons. These data suggest that differential ligand expression on retinal axons is a major determinant of topographic targeting in the retinotectal projection.  相似文献   

7.
8.
In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands.  相似文献   

9.
Ephrins and Eph receptors are involved in axon guidance and cellular morphogenesis. An interaction between ephrin and Eph receptors elicits neuronal growth-cone collapse through cytoskeletal disassembly. When NIH3T3 cells were plated onto an ephrinA1-coated surface, the cells both adhered and spread. Adhesion and spreading proceeded concomitantly with changes in both the actin and microtubule cytoskeleton. EphA2, focal adhesion kinase (FAK) and p130(cas) were identified as the major ephrin-dependent phosphotyrosyl proteins during the ephrin-induced morphological changes. Mouse embryonic fibroblasts (MEFs) derived from FAK(-/-) and p130(cas-/-) mice had severe defects in ephrinA1-induced cell spreading, which were reversed after re-expression of FAK or p130(cas), respectively. Expression of a constitutively active EphA2 induced NIH3T3 cells to undergo identical, but ligand-independent, morphological changes. These data show that ephrinA1 can induce cell adhesion and actin cytoskeletal changes in fibroblasts in a FAK- and p130(cas)-dependent manner, through activation of the EphA2 receptor. The finding that ephrin Eph signalling can result in actin cytoskeletal assembly, rather than disassembly, has many implications for ephrin Eph responses in other cell types.  相似文献   

10.
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B‐class receptors. Here, we present the crystal structures of an A‐class complex between EphA2 and ephrin‐A1 and of unbound EphA2. Although these structures are similar overall to their B‐class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A‐class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a ‘lock‐and‐key’‐type binding mechanism, in contrast to the ‘induced fit’ mechanism defining the B‐class molecules. This model is supported by structure‐based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell‐based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2‐specific homotypic cell adhesion interactions.  相似文献   

11.
Eph receptors and ephrin ligands are widely expressed in epithelial cells and mediate cell repulsive motility through heterotypic cell-cell interactions. Several Ephs, including EphA2, are greatly overexpressed in certain tumors, in correlation with poor prognosis and high vascularity in cancer tissues. The ability of several Eph receptors to regulate cell migration and invasion likely contribute to tumor progression and metastasis. We report here that in prostatic carcinoma cells ephrinA1 elicits a repulsive response that is executed through a Rho-dependent actino/myosin contractility activation, ultimately leading to retraction of the cell body. This appears to occur through assembly of an EphA2-associated complex involving the two kinases Src and focal adhesion kinase (FAK). EphrinA1-mediated repulsion leads to the selective phosphorylation of Tyr-576/577 of FAK, enhancing FAK kinase activity. The repulsive response elicited by ephrinA1 in prostatic carcinoma cells is mainly driven by a Rho-mediated phosphorylation of myosin light chain II, in which Src and FAK activation are required steps. Consequently, Src and FAK are upstream regulators of the overall response induced by ephrinA1/EphA2, instructing cells to retract the cell body and to move away, probably facilitating dissemination and tissue invasion of ephrin-sensitive carcinomas.  相似文献   

12.
Insulin-like growth factor-I (IGF-I) activates not only the phosphatidylinositol 3-kinase (PI3K)-AKT cascade that is essential for myogenic differentiation but also the extracellular signal-regulated kinase (ERK) 1/2 cascade that inhibits myogenesis. We hypothesized that there must be a signal that inhibits ERK1/2 upon cell-cell contact required for skeletal myogenesis. Cell-cell contact-induced engagement of ephrin ligands and Eph receptors leads to downregulation of the Ras-ERK1/2 pathway through p120 Ras GTPase-activating protein (p120RasGAP). We therefore investigated the significance of the ephrin/Eph signal in IGF-I-induced myogenesis. EphrinA1-Fc suppressed IGF-I-induced activation of Ras and ERK1/2, but not that of AKT, in C2C12 myoblasts, whereas ephrinB1-Fc affected neither ERK1/2 nor AKT activated by IGF-I. IGF-I-dependent myogenic differentiation of C2C12 myoblasts was potentiated by ephrinA1-Fc. In p120RasGAP-depleted cells, ephrinA1-Fc failed to suppress the Ras-ERK1/2 cascade by IGF-I and to promote IGF-I-mediated myogenesis. EphrinA1-Fc did not promote IGF-I-dependent myogenesis when the ERK1/2 was constitutively activated. Furthermore, a dominant-negative EphA receptor blunted IGF-I-induced myogenesis in C2C12 and L6 myoblasts. However, the inhibition of IGF-I-mediated myogenesis by down-regulation of ephrinA/EphA signal was canceled by inactivation of the ERK1/2 pathway. Collectively, these findings demonstrate that the ephrinA/EphA signal facilitates IGF-I-induced myogenesis by suppressing the Ras-ERK1/2 cascade through p120RasGAP in myoblast cell lines.  相似文献   

13.
The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell-cell and matrix-cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs.Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph-ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.  相似文献   

14.
Bones cannot properly form or be maintained without cell-cell interactions through ephrin ligands and Eph receptors. Cell culture analysis and evaluation of genetic mouse models and human diseases reveal various ephrins and Eph functions in the skeletal system. Migration, attachment and spreading of mesenchymal stem cells are regulated by ephrinB ligands and EphB receptors. ephrinB1 loss-of-function is associated with craniofrontonasal syndrome (CFNS) in humans and mice. In bone remodeling, ephrinB2 is postulated to act as a “coupling stimulator.” In that case, bidirectional signaling between osteoclastic ephrinB2 and osteoblastic EphB4 suppresses osteoclastic bone resorption and enhances osteoblastic bone formation, facilitating the transition between these two states. Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts and enhances osteoblastic bone formation. In contrast to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since ephrinA2 reverse signaling into osteoclasts enhances osteoclastogenesis and EphA2 forward signaling into osteoblasts suppresses osteoblastic bone formation and mineralization. Furthermore, ephrins and Ephs likely modulate pathological conditions such as osteoarthritis, rheumatoid arthritis, multiple myeloma and osteosarcoma. This review focuses on ephrin/Eph-mediated cell-cell interactions in bone biology.  相似文献   

15.
Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 Å resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.  相似文献   

16.
Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis.  相似文献   

17.
Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-transformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA) as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Ki = 49 μM). Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC(50) = 48 and 66 μM, respectively) without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 μM (LANCE method) confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis.  相似文献   

18.
Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin‐A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with β‐galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin‐A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon‐target interactions. In the presence of ephrin‐A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin‐A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin‐A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

19.
EphA2 as a novel molecular marker and target in glioblastoma multiforme   总被引:6,自引:0,他引:6  
We investigated the presence of EphA2, and its ligand, ephrinA1, in glioblastoma multiforme (GBM), a malignant neoplasm of glial cells, and normal brain. We also initially examined the functional importance of the interaction between EphA2 and ephrinA1 in glioma cells. Expression and localization of EphA2 and ephrinA1 in human GBM and normal brain were examined using Western blotting, immunofluorescence, and immunohistochemistry. A functional role for EphA2 was investigated by assessing the activation status of the receptor and the effect of ephrinA1 on the anchorage-independent growth and invasiveness of GBM cells. We found EphA2 to be elevated in approximately 90% of GBM specimens and cell lines but not in normal brain, whereas ephrinA1 was present at consistently low levels in both GBM and normal brain. EphA2 was activated and phosphorylated by ephrinA1 in GBM cells. Furthermore, ephrinA1 induced a prominent, dose-dependent inhibitory effect on the anchorage-independent growth and invasiveness of GBM cells highly overexpressing EphA2, which was not seen in cells expressing low levels of the receptor. Thus, EphA2 is both specifically overexpressed in GBM and expressed differentially with respect to its ligand, ephrinA1, which may reflect on the oncogenic processes of malignant glioma cells. EphA2 seems to be functionally important in GBM cells and thus may play an important role in GBM pathogenesis. Hence, EphA2 represents a new marker and novel target for the development of molecular therapeutics against GBM.  相似文献   

20.
EphA2 is frequently overexpressed in cancer, and increasing amounts of evidence show that EphA2 contributes to multiple aspects of the malignant character including angiogenesis and metastasis. Several aspects of the regulation and functional significance of EphA2 expression in cancer are still largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability. These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated reduction in cell viability by inhibiting EphA2 expression is overruled by activated EGFR in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号