首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research suggests the coupling of climatic fluctuations and changes in biological indices that describe species richness, abundance and spatiotemporal distribution. In this study, large-scale modes of atmospheric variability over the northern hemisphere are associated with chlorophyll-a concentration in the Mediterranean. Sea level atmospheric pressure, air temperature, wind speed and precipitation are used to account for climatic and local weather effects, whereas sea surface temperature, sea surface height and salinity are employed to describe oceanic variation. Canonical Correlation Analysis was applied to relate chlorophyll concentration to the above-mentioned environmental variables, while correlation maps were also built to distinguish between localized and distant effects. Spectral analysis was used to identify common temporal cycles between chlorophyll concentration and each environmental variable. These cycles could be interpreted as mechanistic links between chlorophyll and large-scale atmospheric variability. Known teleconnection patterns such as the East Atlantic/Western Russian pattern, the North Atlantic Oscillation, the Polar/Eurasian pattern, the East Pacific/North Pacific, the East Atlantic jet and the Mediterranean Oscillation are found to be the most important modes of atmospheric variability related to chlorophyll-a concentration and distribution. The areas that are mostly affected are near the coasts and areas of upwelling and gyre formation. The results also suggest that this influence may arise either through local effects of teleconnection patterns on oceanic features or large-scale changes superimposed onto the general circulation in the Mediterranean. Guest editor: V. D. Valavanis Essential Fish Habitat Mapping in the Mediterranean  相似文献   

2.
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large‐scale forcing controls decadal‐scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin‐scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large‐scale forcing. Moreover, we show that a long‐term increase in coastal upwelling translates via a bottom‐up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS.  相似文献   

3.
Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall''s basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.  相似文献   

4.
Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.  相似文献   

5.
Globally, small-scale fisheries are influenced by dynamic climate, governance, and market drivers, which present social and ecological challenges and opportunities. It is difficult to manage fisheries adaptively for fluctuating drivers, except to allow participants to shift effort among multiple fisheries. Adapting to changing conditions allows small-scale fishery participants to survive economic and environmental disturbances and benefit from optimal conditions. This study explores the relative influence of large-scale drivers on shifts in effort and outcomes among three closely linked fisheries in Monterey Bay since the Magnuson-Stevens Fisheries Conservation and Management Act of 1976. In this region, Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identify four modes from 1974 to 2012 that are dominated (i.e., a given species accounting for the plurality of landings) by squid, sardine, anchovy, or lack any dominance, and seven points of transition among these periods. This approach enables us to determine which drivers are associated with each mode and each transition. Overall, we show that market and climate drivers are predominantly attributed to dominance transitions. Model selection of external drivers indicates that governance phases, reflected as perceived abundance, dictate long-term outcomes. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.  相似文献   

6.
A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002–2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the “mean” spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic character of the study areas, highlighting the role of areas where the local environmental regimes meet ‘the ocean triad hypothesis’.  相似文献   

7.
Trawl data from Scottish research vessels dating from January 1925 show that catches of the warm water pelagic species, anchovy ( Engraulis encrasicholus ) and sardine ( Sardina pilchardus ), increased suddenly after 1995. Most were observed in the first quarter of each year, with 1998 and 2003 having the largest numbers, although few data are available for the last quarter. The authors believe that these long-term changes are related to rising sea temperatures although the exact causal mechanism is not clear.  相似文献   

8.
The pelagic fishery in South Africa targets mainly anchovy, Engraulis capensis, and sardine, Sardinops sagax, both of which have varied substantially in abundance during the history of the fishery. Since 1988, there has been progress in this fishery towards the use of management procedures as the basis for determination of management regulations, where a management procedure is defined as a set of rules, derived by simulation and normally implemented for three to five years, specifying how the regulatory mechanism is set, the data collected for this purpose and how these data are to be analysed and used. Advantages of management procedures include formal consideration of uncertainty, the ability to choose decision rules based on their predicted medium-term consequences and a saving in workload compared with annual assessments.This paper discusses the lessons learned in application of management procedures and their precursors in this fishery. The high variability in abundance of the two stocks, the trend in their relative abundance, the substantial uncertainties in information, strong pressure to meet socio-economic goals and the conflicting objectives which arose between the directed anchovy and directed sardine fishery are identified as major problems in implementation of procedures and management of the resources. However, the use of management procedures is considered to have led to greatly improved communication with the industry and to substantial input by them into the management process. The procedures and the simulations upon which they were based also enabled consideration of the major sources of uncertainty in understanding of the resource dynamics and facilitated the development of procedures that were robust to them.It is argued that biological uncertainty greatly exacerbated the problems in application of the procedures but probably cannot be markedly reduced in the near future. Management procedures must be robust to likely variability and uncertainty. Of equal importance are identification and selection of achievable objectives, and allocation to the political decision makers and not to the scientists, of responsibility for determining acceptable trade-offs between conservation and socio-economic goals. Other issues, including the importance of long-term rights and allowance for flexibility in fishing practice, are also highlighted  相似文献   

9.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll‐a concentration (Chl‐a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large‐scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl‐a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high‐latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl‐a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large‐scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top‐down teleconnection between the high‐latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity. The results also highlight the importance of understanding teleconnection among atmosphere–ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.  相似文献   

10.
It is widely believed that environmental variability is the main cause for fluctuations in commercially exploited small pelagic fish populations around the world. Nevertheless, density-dependent factors also can drive population dynamics. In this paper, we analyzed thirteen years of a relative abundance index of two clupeoids fish populations coexisting in the central-south area off Chile, namely the common sardine, Strangomera bentincki, and anchovy, Engraulis ringens. We applied the classical diagnostic tools of time series analysis to the observed time-series. Also, the realized per capita population growth rate was studied with the aim of detecting the feedback structure that is characterizing the population dynamics of the two species. The analysis suggests that population fluctuations of the two species have an important density-dependent component, displaying first-order (direct density-dependent) and second-order (delayed density-dependent) simultaneously. The density-dependent component explained 70.5 and 55.6 % of the realized per capita population growth rate of common sardine and anchovy, respectively. The deterministic skeleton model showed an asymptotic convergence to equilibrium density. In presence of a stochastic environment, fluctuations were reproduced for the species showing a component of fluctuation with a period of 4 year. The intrinsic dynamics of each species is typical of interacting species resulting from trophic interactions. It is postulated that the second-order dynamics of S. bentincki and E. ringens in central-south Chile, may be the result from interactions with a specialist predator (the fishing fleet), interacting with exogenous environmental factors.  相似文献   

11.
We investigated the environmental drivers of larval abundance of anchovy Engraulis encrasicolus and sardine Sardinops sagax in Algoa Bay, Eastern Cape (South Africa). This study comprised a pre-drought post-drought time period, comparing the responses of the fish larvae to different factors before and after the drought. The current study presents, for the first time, which environmental variables are affecting the anchovy and sardine larvae populations in the region. Easterly wind speed and zooplankton density were the only environmental variables that presented a significant change between the pre- and post-drought periods, increasing after the drought. Generalized additive models (GAMs) were used in order to explore the effects that environmental factors might have in the abundance of anchovy and sardine larvae in Algoa Bay. Specifically, the GAM that best explained the deviance of the anchovy larvae dynamics included the covariates rainfall, easterly wind speed, Chl a concentration, sardine larvae abundance and the interactions SST*Chla and sard*SST. The GAM best explaining sardine larvae abundance included only the easterly wind speed as a covariate. This model showed that there was a positive relationship between the higher values of wind speed and sardine larvae abundance.  相似文献   

12.
In the upwelling zone of the northeastern Pacific, cold nutrient-rich conditions alternate with warm nutrient-poor intervals on timescales ranging from months to millennia. In this setting, the abundances of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) fluctuate by several orders of magnitude, with sardine dominating during warm conditions and anchovy dominating during cool conditions. Two population models can explain the response of these fishes to adverse conditions. Under the basin model, species distributions contract to a central (optimal) range during population crashes. Expectations of this model may include a single range-wide population with a decline in genetic diversity on both sides of a central refuge. In contrast, the self-recruitment model invokes a series of local oceanographic domains that maintain semi-isolated subpopulations. During adverse conditions, some subpopulations cannot complete the life cycle within the local environment and are extirpated. Expectations of this model include some degree of population genetic structure and no clear gradient in genetic diversity. We examined mitochondrial DNA cytochrome b sequences to assess these competing models for anchovy (N = 196; 539 bp) and sardine (N = 107; 425 bp). The mitochondrial DNA gene genealogies are shallow but diverse for both species. Haplotype frequencies are homogeneous among subpopulations, but genetic diversities peak for both species along Baja California and adjacent southern California. Mismatch distributions and Tajima's D-values reveal distinctive signatures of population bottlenecks and expansions. Sardine haplotypes coalesce at approximately 241,000 years bp, with an initial female effective population size Nf0 = 0 followed by exponential growth to Nf1 = 115 million. Anchovy haplotypes coalesce at approximately 282,000 years bp, with an initial population size of Nf0 = 14,000, followed by exponential growth to Nf1 = 2.3 million. These results indicate a founder event for sardine and a severe population decline for anchovy in the California Current during the late Pleistocene. Overall, these data support the basin model on decadal timescales, although local recruitment may dominate on shorter timescales.  相似文献   

13.
Cephalopods are highly sensitive to environmental conditions and changes at a range of spatial and temporal scales. Relationships documented between cephalopod stock dynamics and environmental conditions are of two main types: those concerning the geographic distribution of abundance, for which the mechanism is often unknown, and those relating to biological processes such as egg survival, growth, recruitment and migration, where mechanisms are sometimes known and in a very few cases demonstrated by experimental evidence. Cephalopods seem to respond to environmental variation both ‘actively’ (e.g. migrating to areas with more favoured environmental conditions for feeding or spawning) and ‘passively’ (growth and survival vary according to conditions experienced, passive migration with prevailing currents). Environmental effects on early life stages can affect life history characteristics (growth and maturation rates) as well as distribution and abundance. Both large-scale atmospheric and oceanic processes and local environmental variation appear to play important roles in species–environment interactions. While oceanographic conditions are of particular significance for mobile pelagic species such as the ommastrephid squids, the less widely ranging demersal and benthic species may be more dependent on other physical habitat characteristics (e.g. substrate and bathymetry). Coastal species may be impacted by variations in water quality and salinity (related to rainfall and river flow). Gaps in current knowledge and future research priorities are discussed. Key research goals include linking distribution and abundance to environmental effects on biological processes, and using such knowledge to provide environmental indicators and to underpin fishery management.  相似文献   

14.
Using large-scale climate indices in climate change ecology studies   总被引:2,自引:1,他引:1  
Recently, climate change research in ecology has embraced the use of large-scale climate indices in long-term, retrospective studies. In most instances, these indices are related to large-scale teleconnection and atmospheric patterns of which over a dozen have been identified. Although most of these relate to different geographical areas, many are related and interact. Consequently, even the simple task of selecting one to use in ecological research has become complicated, despite our ability to disentangle the results from analyses involving large-scale climate indices. Leaning upon recent reviews of the definition and functioning of large-scale climate indices, as well as reviews on the relationship between these and concomitant changes in ecological variables, we focus here on the usefulness of large-scale climate indices in different aspects of climate change ecology. By providing a general framework for using climate indices, we illustrate the potential advantages of their utility by integrating three case histories focusing on two groups of evolutionarily distinct organisms: birds and mammals.  相似文献   

15.
There are two factors affecting long-term fluctuation of planktotrophic pelagic fish: environmental fluctuation and interspecific competition. Long-term catch data of planktotrophic pelagic fishes in Japan suggest that the chub mackerel (species B) was replaced by the sardine (A), A was replaced by the anchovy, Pacific saury and horse mackerel (Group C), and species in group C were replaced by species B. If species A defeats B, B defeats C, and C defeats A in interspecific competitive ability, then the abundance of these three groups fluctuate forever and dominate in the same order. We call this cyclic advantage hypothesis for species replacement. In this model, environmental fluctuation affects the species replacement as a trigger. Environmental fluctuation does not determine the next dominant species but greatly affects when the next replacement occurs.  相似文献   

16.
Trophic interactions and community structure in the upwelling system off Central Chile (USCCh) (33-39°S) are analyzed using biological and ecological data concerning the main trophic groups and the Ecopath with Ecosim software version 5.0 (EwE). The model encompasses the fisheries, cetaceans, sea lion, marine birds, cephalopods, large-sized pelagic fish (sword fish), medium-sized pelagic fish (horse mackerel, hoki), small-sized pelagic fish (anchovy, common sardine), demersal fish (e.g. Chilean hake, black conger-eel), benthic invertebrates (red squat lobster, yellow squat lobster) and other groups such as zooplankton, phytoplankton and detritus. Input data was gathered from published and unpublished reports and our own estimates. Trophic interactions, system indicators and food web attributes are calculated using network analysis routines included in EwE. Results indicate that trophic groups are aligned around four trophic levels (TL) with phytoplankton and detritus at the TL=1, while large-sized pelagic fish and cetaceans are top predators (TL>4.0). The fishery is located at an intermediate to low trophic level (TL=2.97), removing about 15% of the calculated system primary production. The pelagic realm dominates the system, with medium-sized pelagic fish as the main fish component in biomass, while small-sized pelagic fish dominate total landings. Chilean hake is by far the main demersal fish component in both, biomass and yield. Predators consume the greater part of the production of the most important fishery resources, particularly juvenile stages of Chilean hake. Consequently, mortality by predation is an important component of total mortality. However, fishery also removes a large fraction of common sardine, anchovy, horse mackerel, and Chilean hake. The analysis of direct and indirect trophic impacts reveals that Chilean hake is a highly cannibalistic species. Chilean hake is also an important predator on anchovy, common sardine, benthic invertebrates, and demersal fish. The fisheries heavily impact on Chilean hake, common sardine, anchovy, and horse mackerel. Total system biomass (B=476 t km−2 year−1) and throughput (T=89454 t km−2 year−1) estimated in the USCCh model are in accordance with models of comparable systems. Considering system attributes derived from network analysis, the USCCh can be characterized as an immature system, with short trophic chains and low trophic transfer efficiency. Finally, we suggest that trophic interactions should be considered in stock assessment and management programs in USCCh. In addition, future research programs should be carried out in order to understand the ecosystem effects of fishing and trophic control in this highly productive food web.  相似文献   

17.
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate‐related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20‐year period (1993–2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi‐decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.  相似文献   

18.
The European Anchovy (Engraulis encrasicolus, Linnaeus, 1758) represents one of the most important fishery resources in some areas of the Mediterranean. This short-lived, small pelagic fish is characterized by large interannual fluctuations, probably as a result of environmental variability. As part of the European Project Med 98-070, the main aim of which was the study of the anchovy population in the Strait of Sicily, icthyoplankton surveys were carried out between 1999 and 2001, during the peak spawning season for anchovy. Present work reports the relationship between meso-zooplankton biomass and the abundance of anchovy eggs and larvae in the Strait of Sicily. Data on anchovy egg abundance showed that the main spawning area was located in the north-western region of the study area. The branch of the Atlantic Ionian Stream, running parallel to the southern Sicilian coast, acts as a transport mechanism for anchovy eggs and larvae towards the southernmost end of the island, off Cape Passero. Observed distributions were largely consistent with local hydrographic features, which allow larvae to be retained in areas providing the necessary feeding conditions for recruitment success.  相似文献   

19.
A stochastic age-structured population model was developed to explore biologically favourable levels of effort and closing periods within the sardine pelagic fishery in the eastern Mediterranean Sea. Results suggested that the developed age-structured model captured the observed biomass fluctuations and catches reasonably well and represents the first comprehensive investigation of alternative management strategies for eastern Mediterranean sardine fishery that include stochasticity. The present study provided direct evidence for the importance of the correct timing of the temporal fishing ban. Significant benefits were found both in terms of biomass and catch from a corrective shift in the fishing closed period. The current findings suggested that protecting the younger age groups from fishing in the period October–December, by shifting the ban period earlier than December may profit, biologically, the stock and economically the fishing sector. Progressive reductions in fishing mortality/effort also yield significant positive biological and fishery benefits in the short term.  相似文献   

20.
The discipline of ecosystem oceanography provides a framework for assessing the role of mesoscale physical processes on the formation and occurrence of biological hotspots. We used shipboard surveys over nine years to investigate environmental determinants of seabird hotspots near the Antarctic Peninsula, a region experiencing rapid climate change and an expanding krill fishery. We hypothesize that seabird hotspots are structured by mesoscale ocean conditions that reflect differences in prey distribution within oceanic and coastal waters. We used generalized additive models to quantify functional relationships of seabird hotspots with krill biomass, and a suite of remotely sensed environmental variables, such as eddy kinetic energy. The spatial organization, changes in intensity, and distribution shifts of seabird hotspots indicate different environmental drivers within coastal and oceanic domains and reflect the seasonal variability of the ecosystem. Our results indicate at least eight mesoscale hotspot zones that represent ecologically important areas where significant krill and predator biomass may be concentrated. Our ecosystem assessment of seabird hotspots identified critical foraging habitat and provided reference points to benefit research on estimating their trophic impacts on Antarctic ecosystems and potential effects from the krill fishery. Our approach is generally applicable to other pelagic ecosystems that are structured by hydrographic fronts and eddies, and containing schooling forage species shared by multiple wide-ranging predators. Furthermore, identification of biological hotspots is useful for the designation of marine protected areas most critical to potentially endangered wildlife and fisheries resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号