首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may be primarily in competition with electricity production from the lignocellulosic fraction of sugarcane. A preliminary technical and economic analysis of the integrated production of first and second generation ethanol from sugarcane in Brazil is presented and different technological scenarios are evaluated. The analysis showed the importance of the integrated use of sugarcane including the biomass represented by surplus bagasse and trash that can be taken from the field. Second generation ethanol may favorably compete with bioelectricity production when sugarcane trash is used and when low cost enzyme and improved technologies become commercially available.  相似文献   

2.
Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included.  相似文献   

3.
The potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1 L methane/kg bagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone.  相似文献   

4.
An alternative route for bio-ethanol production from sugarcane stalks (juice and bagasse) featuring a previously reported low temperature alkali pretreatment method was evaluated. Test-tube scale pretreatment-saccharification experiments were carried out to determine optimal LTA pretreatment conditions for sugarcane bagasse with regard to the efficiency of enzymatic hydrolysis of the cellulose. Free fermentable sugars and bagasse recovered from 2 kg of sugarcane stalks were jointly converted into ethanol via separate enzymatic hydrolysis and fermentation (SHF). Results showed that 98% of the cellulose present in the optimally pretreated bagasse was hydrolyzed into glucose after 72-h enzymatic saccharification using commercially available cellulase and β-glucosidase preparations at relatively low enzyme loading. The fermentable sugars in the mixture of the sugar juice and the bagasse hydrolysate were readily converted into 193.5 mL of ethanol by Saccharomyces cerevisiae within 12h, achieving 88% of the theoretical yield from the sugars and cellulose.  相似文献   

5.
Lignocellulosic materials are the most abundant renewable organic resources (~200 billion tons annually) on earth that are readily available for conversion to ethanol and other value-added products, but they have not yet been tapped for the commercial production of fuel ethanol. The lignocellulosic substrates include woody substrates such as hardwood (birch and aspen, etc.) and softwood (spruce and pine, etc.), agro residues (wheat straw, sugarcane bagasse, corn stover, etc.), dedicated energy crops (switch grass, and Miscanthus etc.), weedy materials (Eicchornia crassipes, Lantana camara etc.), and municipal solid waste (food and kitchen waste, etc.). Despite the success achieved in the laboratory, there are limitations to success with lignocellulosic substrates on a commercial scale. The future of lignocellulosics is expected to lie in improvements of plant biomass, metabolic engineering of ethanol, and cellulolytic enzyme-producing microorganisms, fullest exploitation of weed materials, and process integration of the individual steps involved in bioethanol production. Issues related to the chemical composition of various weedy raw substrates for bioethanol formation, including chemical composition-based structural hydrolysis of the substrate, need special attention. This area could be opened up further by exploring genetically modified metabolic engineering routes in weedy materials and in biocatalysts that would make the production of bioethanol more efficient.  相似文献   

6.
Abstract

Bioethanol production from agro-industrial residues is gaining attention because of the limited production of starch grains and sugarcane, and food–fuel conflict. The aim of the present study is to maximize the bioethanol production using cassava bagasse as a feedstock. Enzymatic liquefaction, by α-amylase, followed by simultaneous saccharification and fermentation (SSF), using glucoamylase and Zymomonas mobilis MTCC 2427, was investigated for bioethanol production from cassava bagasse. The factors influencing ethanol production process were identified and screened for significant factors using Plackett–Burman design. The significant factors (cassava bagasse concentration (10–50?g/L), concentration of α-amylase (5–25% (v/v), and temperature of fermentation (27–37?°C)) were optimized by employing Box–Behnken design and genetic algorithm. The maximum ethanol concentrations of 25.594?g/L and 25.910?g/L were obtained from Box–Behnken design and genetic algorithm, respectively, under optimum conditions. Thus, the study provides valuable insights in utilizing the cost-effective industrial residue, cassava bagasse, for the bioethanol production.  相似文献   

7.
Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ~1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ~85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95–98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX‐treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX‐treated bagasse. Co‐fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX‐treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH‐ST) produced 34–36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441–450. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105?°C and only residual catalytic activity at temperatures below 70?°C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35?°C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.  相似文献   

9.
The International Journal of Life Cycle Assessment - The use of bagasse and trash from sugarcane fields in ethanol production is supposed to increase the ethanol yield per hectare, to reduce the...  相似文献   

10.

Background

Ensiling cannot be utilized as a stand-alone pretreatment for sugar-based biorefinery processes but, in combination with hydrothermal processing, it can enhance pretreatment while ensuring a stable long-term storage option for abundant but moist biomass. The effectiveness of combining ensiling with hydrothermal pretreatment depends on biomass nature, pretreatment, and silage conditions.

Results

In the present study, the efficiency of the combined pretreatment was assessed by enzymatic hydrolysis and ethanol fermentation, and it was demonstrated that ensiling of sugarcane bagasse produces organic acids that can partly degrade biomass structure when in combination with hydrothermal treatment, with the consequent improvement of the enzymatic hydrolysis of cellulose and of the overall 2G bioethanol process efficiency. The optimal pretreatment conditions found in this study were those using ensiling and/or hydrothermal pretreatment at 190 °C for 10 min as this yielded the highest overall glucose recovery yield and ethanol yield from the raw material (0.28–0.30 g/g and 0.14 g/g, respectively).

Conclusion

Ensiling prior to hydrothermal pretreatment offers a controlled solution for wet storage and long-term preservation for sugarcane bagasse, thus avoiding the need for drying. This preservation method combined with long-term storage practice can be an attractive option for integrated 1G/2G bioethanol plants, as it does not require large capital investments or energy inputs and leads to comparable or higher overall sugar recovery and ethanol yields.
  相似文献   

11.
The cellulose dissolution solvent used in Lyocell process for cellulose fiber preparation, N-methylmorpholine-N-oxide (NMMO) monohydrate, was demonstrated to be an effective agent for sugarcane bagasse pretreatment. Bagasse of 20wt% was readily dissolved in NMMO monohydrate at 130 degrees C within 1h. After dissolution, bagasse could be regenerated by rapid precipitation with water as a porous and amorphous mixture of its original components. The regenerated bagasse exhibited a significant enhancement on enzymatic hydrolysis kinetic. Not only the reducing sugars releasing rate but also hydrolysis yield was enhanced at least twofold as compared with that of untreated bagasse. The cellulose fraction of regenerated bagasse was nearly hydrolyzed to glucose after 72h hydrolysis with Cellulase AP3. The recycled NMMO demonstrated the same performance as the fresh one on bagasse pretreatment for hydrolysis enhancement. The regenerated bagasse was directly used in simultaneous saccharification and fermentation (SSF) for ethanol production by Zymomonas mobilis. No negative effect on ethanol fermentation was observed and ethanol yield approximately 0.15 g ethanol/g baggasse was achieved.  相似文献   

12.
Abstract

In Brazil, sugarcane biomass is generated in large amounts. Sugarcane bagasse and straw are considered as an important feedstock for renewable energy and biorefinery. This paper aims to study the generation of monosaccharides (C5 and C6) from sugarcane biomass via processing bagasse or straw and mixtures of both materials (bagasse:straw 3:1, 1:1 and 1:3). Samples were pretreated with sulfuric acid which resulted in approximately 90% of hemicellulose solubilization, corresponding to around 58 g L? 1 of xylose. Pretreated straw showed greater susceptibility to enzymatic hydrolysis in comparison to bagasse, as shown by glucose yields of 76% and 65%, respectively, whereas the mixtures showed intermediate yields. Thus, one strategy to balance sugarcane biomass availability and possibly increasing 2G ethanol production would be to use bagasse–straw mixtures in appropriate ratios according to market fluctuations. Untreated and pretreated samples were analyzed using X-ray diffraction, but there was no relationship to enzymatic hydrolysis.  相似文献   

13.
Ethyl acetate extraction (EAE) of the steam exploded sugarcane bagasse may be an effective and economic way to extract antioxidants as well as enhance the enzymatic hydrolysis and bioethanol yield from the extracted residue. Therefore, the effects of EAE on steam-exploded sugarcane bagasse (SESB) were studied. Under boiling solvent extraction (BSE), the efficiency of EAE for obtaining phenolics from SESB was approximately 20%. EA extracts obtained under BSE showed an H2O2 scavenging activity (210 μL) of 99%. The IC50 values for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power of BSE40 were 50.89 and 256.38 μg/mL, respectively, while those of vitamin C were 24 and 112 μg/mL, respectively. EAE improved the glucose yield by 30% but had no significant effect on the xylose yield during the enzymatic hydrolysis obtained using Celluclast 1.5L and Novozym 188. EAE also increased the ethanol yield by 8.78% by employing simultaneous saccharification and fermentation. The present study may be of great importance in industrial bioethanol production from steam-exploded biomass environmentally friendly and economically.  相似文献   

14.
The reuse of the solid residues generated in the production of second-generation (2G) ethanol to obtain high-value products is a potential strategy for improving the economic and environmental viability of the overall process. This study evaluated the feasibility of using the residual solids remaining after the enzymatic hydrolysis of sugarcane bagasse for the production of cellulose nanocrystals (CNC), a valuable bionanomaterial. To this end, sugarcane bagasse subjected to steam explosion (SEB) or liquid hot water (LHWB) pretreatment was hydrolysed using different loadings of a commercial cellulase cocktail. Samples of SEB and LHWB were hydrolysed enzymatically, resulting in glucose releases close to 40 g/L, which would be suitable for producing 2G ethanol by microbial fermentation. The solid residues after the enzymatic hydrolysis step presented cellulose contents of up to 54 %, indicating that a significant amount of recalcitrant crystalline cellulose remained available for subsequent use. These solid residues were purified and submitted to acid hydrolysis, resulting in the successful formation of CNC with crystallinity close to 80 %, lengths of 193–246 nm and diameters of 14–18 nm. The CNC produced presented morphology, dimensions, physical-chemical characteristics, thermal stability and crystallinity within the ranges reported for this type of material. Moreover, the enzyme loading or the type of hydrothermal pretreatment process employed here showed no significant effects on the CNC obtained, indicating that these variables could be flexibly adjusted according to specific interests.  相似文献   

15.

Background

Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented.

Results

The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively.

Conclusions

According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall.  相似文献   

16.
In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.  相似文献   

17.
18.
Aims: To evaluate sugar recoveries and fermentabilities of eight lignocellulosic raw materials following mild acid pretreatment and enzyme hydrolysis using a recombinant strain of Zymomonas mobilis. Methods and Results: Dilute acid pretreatment (2% H2SO4) with 10% (w/v) substrate loading was performed at 134°C for 60 min followed by enzyme hydrolysis at 60°C. The results demonstrated that hydrolysis of herbaceous raw materials resulted in higher sugar recoveries (up to 60–75%) than the woody sources (<50%). Fermentation studies with recombinant Z. mobilis ZM4 (pZB5) demonstrated that final ethanol concentrations and yields were also higher for the herbaceous hydrolysates. Significant reduction in growth rates and specific rates of sugar uptake and ethanol production occurred for all hydrolysates, with the greatest reductions evident for woody hydrolysates. Further studies on optimization of enzyme hydrolysis established that higher sugar recoveries were achieved at 50°C compared to 60°C following acid pretreatment. Conclusions: Of the various raw materials evaluated, the highest ethanol yields and productivities were achieved with wheat straw and sugarcane bagasse hydrolysates. Sorghum straw, sugarcane tops and Arundo donax hydrolysates were similar in their characteristics, while fermentation of woody hydrolysates (oil mallee, pine and eucalyptus) resulted in relatively low ethanol concentrations and productivities. The concentrations of a range of inhibitory compounds likely to have influence the fermentation kinetics were determined in the various hydrolysates. Significance and Impact of the Study: The study focuses on lignocellulosic materials available for second generation ethanol fermentations designed to use renewable agricultural/forestry biomass rather than food‐based resources. From the results, it is evident that relatively good sugar and ethanol yields can be achieved from some herbaceous raw materials (e.g. sugarcane bagasse and sorghum straw), while much lower yields were obtained from woody biomass.  相似文献   

19.
In the present study, the main focus was the characterization and application of the by‐product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic‐type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p‐hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin–formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m?1 for a 40 wt% sisal fiber‐reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber‐reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107:612–621. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号