共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Xin Zhang Jun Gao Yun Yang Yang Xu Changshui Li Guilin Guo Guanghua Liu Shuangmei Xie Jinyan Liang Shangdong 《Purinergic signalling》2020,16(4):601-602
Purinergic Signalling - Due to the authors’ carelessness, we used mistakenly PBMCs isolated from same patient in Fig. 1a for P2X3 immunoreactivity in VI: PUE-treated group on the second day... 相似文献
2.
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to
hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An
obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family
members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory
reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination
of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization
of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct
phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function
and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however,
is unlikely to involve direct PKC-mediated P2X receptor phosphorylation. 相似文献
3.
Slow recovery from desensitization of P2X3 receptors makes quite problematical understanding of their physiological function. We found that the recovery from desensitization
of P2X3 receptors is speeded up by a decrease in external pH and an increase in temperature. On the contrary, the onset of desensitization
is independent of these influences. Such unusual combination of temperature sensitivity/insensitivity allows receptors to
function near normal body temperature even at low nanomolar concentrations of ATP. Since it is known that slight acidosis
and increased temperature are typical of inflammation, we conclude that under inflammatory conditions the function of P2X3 receptors is upregulated.
Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 377–379, July–October, 2007. 相似文献
4.
Tu WZ Cheng RD Cheng B Lu J Cao F Lin HY Jiang YX Wang JZ Chen H Jiang SH 《Neurochemistry international》2012,60(4):379-386
Adenosine 5'-triphosphate disodium (ATP) gated P2X receptors, especially the subtype P2X(3), play a key role in transmission of pain signals in neuropathic pain, ATP has been documented to play a significant role in the progression of pain signals, suggesting that control of these pathways through electroacupuncture (EA) is potentially an effective treatment for chronic neuropathic pain. EA has been accepted to effectively manage chronic pain by applying the stimulating current to acupoints through acupuncture needles. To determine the significance of EA on neuropathic pain mediated by P2X(3) receptors in the dorsal root ganglion (DRG) neurons, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded, and the expression of P2X(3) receptors in the DRG neurons was assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). In addition, the currents which were evoked in DRG neurons isolated from rats following chronic constriction injury (CCI) by the P2X(3) receptors agonists i.e. ATP and α,β-methylen-ATP (α,β-meATP) were examined through the experimental use of whole cell patch clamp recording. The present study demonstrates that EA treatment can increase the MWT and TWL values and decrease the expression of P2X(3) receptors in DRG neurons in CCI rats. Simultaneously, EA treatment attenuates the ATP and α,β-meATP evoked currents. EA may be expected to induce an apparent induce analgesic effect by decreasing expression and inhibiting P2X(3) receptors in DRG neurons of CCI rats. There is a similar effect on analgesic effect between rats with contralateral EA and those with ipsilateral EA. 相似文献
5.
Alexander Grote Zsolt Boldogkoi Alexander Grote Zsolt Boldogkoi Andreas Zimmer Christian Steinhäuser 《Molecular membrane biology》2013,30(6):497-506
P2X receptor function in the CNS is poorly understood, and currently available data are partly inconsistent. In the presented study, we investigated P2X3 receptors stably expressed in HEK293 cells. Non-stationary noise analysis of whole cell currents and rapid ATP application through flash photolysis allowed for assessing the single channel conductance (6.6?pS) and the fast activation kinetics of the receptor (20?ms). The characteristics of channel desensitization and pharmacological properties matched previous findings. The properties of wild type receptors were compared with P2X3 constructs carrying a fluorescent tag (ECFP or DsRed2) at the C-terminus. These fluorescently labeled subunits formed functional receptors, with neither the affinity of the ligand binding site nor channel properties (ion selectivity, gating kinetics, single channel conductance) differing from wild type. We conclude that both fusion proteins tested here are suitable for generating transgenic mice, which can be expected to promote understanding of the physiological role of P2X3 receptors in CNS signaling. 相似文献
6.
Zhang A Xu C Liang S Gao Y Li G Wei J Wan F Liu S Lin J 《Neurochemistry international》2008,53(6-8):278-282
Neuropathic pain usually is persistent and no effective treatment. ATP plays an important role in the initiation of pain. P2X(3) receptors are localized in the dorsal root ganglion (DRG) neurons and activated by extracellular ATP. Sodium ferulate (SF) is an active principle from Chinese herbal medicine and has anti-inflammatory activities. This study observed the effects of SF on the nociceptive facilitation of the primary sensory afferent after chronic constriction injury (CCI) mediated by P2X(3) receptor. In this study, the content of ATP in DRG neurons was measured by high-performance liquid chromatography (HPLC). P2X(3) agonist-activated currents in DRG neurons was recorded by the whole-cell patch-clamp skill. The expression of P2X(3) mRNA in DRG neurons was analyzed by in situ hybridization. The ATP content of DRG was increased after CCI. In CCI rats treated with SF, the content of ATP in DRG neurons was reduced. SF decreased the increment of P2X(3) agonist-activated currents and P2X(3) mRNA expression in DRG neurons during CCI. SF may inhibit the initiation of pain and primary afferent sensitization mediated by P2X(3) receptor during CCI. 相似文献
7.
Daniela Gentile Mariarita Natale Pietro Enea Lazzerini Pier Leopoldo Capecchi Franco Laghi-Pasini 《Purinergic signalling》2015,11(4):435-440
Many previous studies have demonstrated that P2X7 receptors (P2X7Rs) have a pleiotropic function in different pathological conditions and could represent a novel target for the treatment of a range of diseases. In particular, recent studies have explored the role of P2X7R in fibrosis, the pathological outcome of most chronic inflammatory diseases. The aim of this review is to discuss the biological features of P2X7R and summarize the current knowledge about the putative role of the P2X7R in triggering fibrosis in a wide spectrum of organs such as the lung, kidney, liver, pancreas, and heart. 相似文献
8.
Vial C Fung CY Goodall AH Mahaut-Smith MP Evans RJ 《Biochemical and biophysical research communications》2006,343(2):415-419
ATP-stimulated P2X1 and ADP-stimulated P2Y1 receptors play important roles in platelet activation. An increase in intracellular Ca2+ represents a key signalling event coupled to both of these receptors, mediated via direct gating of Ca2+-permeable channels in the case of P2X1 and phospholipase-C-dependent Ca2+ mobilisation for P2Y1. We show that disruption of cholesterol-rich membrane lipid rafts reduces P2X1 receptor-mediated calcium increases by approximately 80%, while P2Y1 receptor-dependent Ca2+ release is unaffected. In contrast to artery, vas deferens, bladder smooth muscle, and recombinant expression in cell lines, where P2X1 receptors show almost exclusive association with lipid rafts, only approximately 20% of platelet P2X1 receptors are co-expressed with the lipid raft marker flotillin-2. We conclude that lipid rafts play a significant role in the regulation of P2X1 but not P2Y1 receptors in human platelets and that a reserve of non-functional P2X1 receptors may exist. 相似文献
9.
10.
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. 相似文献
11.
Kenji F Shoji Pablo J Sáez Paloma A Harcha Hector L Aguila Juan C Sáez 《Channels (Austin, Tex.)》2014,8(2):142-156
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. A23187相似文献
12.
It is not clear how the increase in intraluminal pressure behind an obstructing ureteric calculus causes an increase in action potential frequency in ureteric sensory nerves so the pain messages are transmitted to the brain. It has been proposed that ureteric distension causes urothelial release of ATP, which activates purinoceptors on suburothelial nociceptive sensory nerves. The purpose of this study was to determine whether distension of the human ureter results in the release of ATP and whether the nociceptive P2 receptor, P2X(3), is expressed on suburothelial sensory nerves in the human ureter. Human ureter segments were perfused with Krebs solution and intermittently distended to a range of pressures. Samples of perfusate were collected throughout and the ATP concentration ([ATP]) was determined using a luciferin-luciferase assay. Sections of ureter were stained using antibodies against P2X(3) and capsaicin receptors (TRPV1). [ATP] rose to more than 10 times baseline levels after distension beyond a threshold of 25-30 cmH(2)O. Immunofluorescence studies on consecutive frozen sections showed that suburothelial nerves stained positively for P2X(3) and capsaicin receptors, with no staining in controls. These findings are consistent with the hypothesis that purinergic signalling is involved in human ureteric mechanosensory transduction, leading to nociception. 相似文献
13.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such
as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble
agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by
agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled
ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the
P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic
drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are
stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors
is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential
events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs. 相似文献
14.
Sun-Hye Choi Hyeon-Joong Kim Bo-Ra Kim Tae-Joon Shin Sung-Hee Hwang Byung-Hwan Lee Sang-Mok Lee Hyewhon Rhim Seung-Yeol Nah 《Molecules and cells》2013,35(2):142-150
Ginseng, the root of Panax ginseng C.A. Meyer, is used as a general tonic. Recently, we isolated a novel ginsengderived lysophosphatidic acid (LPA) receptor ligand, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity in cells endogenously expressing LPA receptors, e.g., Xenopus oocytes. P2X receptors are ligandgated ion channels activated by extracellular ATP, and 7 receptor subtypes (P2X1–P2X7) have been identified. Most of the P2X1 receptors are expressed in the smooth muscles of genitourinary organs involved in reproduction. A main characteristic of the P2X1 receptor is rapid desensitization after repeated ATP treatment of cells or tissues expressing P2X1 receptors. In the present study, we examined the effect of gintonin on P2X1 receptor channel activity. P2X1 receptors were heterologously expressed in Xenopus oocytes. ATP treatment of oocytes expressing P2X1 receptors induced large inward currents (I ATP ), but repetitive ATP treatments induced a rapid desensitization of I ATP . Gintonin treatment after P2X1 receptor desensitization potentiated I ATP in a concentration-dependent manner. We further examined the signaling transduction pathways involved in gintonin-mediated potentiation of I ATP . Gintoninmediated I ATP potentiation was blocked by Ki16425, an LPA1/3 receptor antagonist, a PKC inhibitor, a PLC inhibitor, and a PI4-Kinase inhibitor but not by a calcium chelator. In addition, mutations of the phosphoinositide binding site of the P2X1 receptor greatly attenuated the gintonin-mediated I ATP potentiation. These results indicate that G protein-coupled LPA receptor activation by gintonin is coupled to the potentiation of the desensitized P2X1 receptor through a phosphoinositide-dependent pathway. 相似文献
15.
Z. J. Weng L. Y. Wu C. L. Zhou C. Z. Dou Y. Shi H. R. Liu H. G. Wu 《Purinergic signalling》2015,11(3):321-329
The aim of this study is to investigate the role of the purinergic receptor P2X3 in the peripheral and central nervous systems during acupuncture treatment for the visceral pain of irritable bowel syndrome (IBS). A total of 24 8-day-old Sprague–Dawley (SD) neonatal male rats (SPF grade) were stimulated using colorectal distention (CRD) when the rats were awake. The modeling lasted for 2 weeks with one stimulation per day. After 6 weeks, the rats were randomly divided into three groups of eight each: (1) the normal group (NG, n = 8); (2) the model group (MG, n = 8); and (3) the model + electroacupuncture group (EA, n = 8) that received electroacupuncture at a needling depth of 5 mm at the Shangjuxu (ST37, bilateral) and Tianshu (ST25, bilateral) acupoints. The parameters of the Han’s acupoint nerve stimulator (HANS) were as follows: sparse-dense wave with a frequency of 2/100 Hz, current of 2 mA, 20 min/stimulation, and one stimulation per day; the treatment was provided for seven consecutive days. At the sixth week after the treatment, the abdominal withdrawal reflex (AWR) score was determined; immunofluorescence and immunohistochemistry were used to measure the expression of the P2X3 receptor in myenteric plexus neurons, prefrontal cortex, and anterior cingulate cortex; and, a real-time PCR assay was performed to measure the expression of P2X3 messenger RNA (mRNA) in the dorsal root ganglion (DRG) and spinal cord. After stimulation with CRD, the expression levels of the P2X3 receptor in the inter-colonic myenteric plexus, DRG, spinal cord, prefrontal cortex, and anterior cingulate cortex were upregulated, and the sensitivity of the rats to IBS visceral pain was increased. Electroacupuncture (EA) could downregulate the expression of the P2X3 receptor and ease the sensitivity to visceral pain. The P2X3 receptor plays an important role in IBS visceral pain. The different levels of P2X3 in the peripheral enteric nervous system and central nervous system mediate the effects of the EA treatment of the visceral hyperalgesia of IBS. 相似文献
16.
Miras-Portugal MT Díaz-Hernández M Giráldez L Hervás C Gómez-Villafuertes R Sen RP Gualix J Pintor J 《Neurochemical research》2003,28(10):1597-1605
ATP stimulates [Ca2+]i increases in midbrain synaptosomes via specific ionotropic receptors (P2X receptors). Previous studies have demonstrated the implication of P2X3 subunits in these responses, but additional P2X subunits must be involved. In the present study, ATP and BzATP proved to be able to induce intrasynaptosomal calcium transients in the midbrain synaptosomes, their effects being potentiated when assayed in a Mg2+-free medium. Indeed, BzATP was shown to be more potent than ATP, and their effects could be inhibited by PPADS and KN-62, but not by suramin. This activity profile is consistent with the presence of functional P2X7 receptors in the midbrain terminals. The existence of presynaptic responses to selective P2X7 agonists could be confirmed by means of a microfluorimetric technique allowing [Ca2+]i measurements in single synaptic terminals. Additionally, the P2X7 receptor protein could be identified in the midbrain synaptosomes and in axodendritic prolongations of cerebellar granule cells by immunochemical staining. 相似文献
17.
18.
19.
Adenosine 5-triphosphate receptors are known to be involved in fast excitatory postsynaptic currents in myenteric neurons of the digestive tract. In the present study, the distribution of P2X2 and P2X3 receptor mRNA was examined by in situ hybridisation while P2X2 and P2X3 receptor protein was localised by immunohistochemical methods. In addition, P2X2 and P2X3 receptors were colocalised with calbindin and calretinin in the myenteric and submucosal plexus. P2X2- and P2X3-immunoreactive neurons were found in the myenteric and submucosal plexuses throughout the entire length of the rat digestive tract from the stomach to the colon. Approximately 60%, 70% and 50% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 56% and 45% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X2 receptor. Approximately 10%, 2% and 15% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 62% and 40% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X3 receptor. Double-labelling studies showed that about 10–25% of the neurons with P2X2 immunoreactivity in myenteric plexus and 30–50% in the submucosal plexus were found to express calbindin or calretinin. About 80% of the neurons with P2X3 receptor immunoreactivity in the myenteric plexus and about 40% in the submucosal plexus expressed calretinin. Approximately 30–75% of the neurons with P2X3 receptor immunoreactivity in the submucosal plexus expressed calbindin, while none of them were found to express calbindin in the myenteric plexus. 相似文献
20.
Kong Q Wang M Liao Z Camden JM Yu S Simonyi A Sun GY Gonzalez FA Erb L Seye CI Weisman GA 《Purinergic signalling》2005,1(4):337-347
Apoptosis is a major cause of cell death in the nervous system. It plays a role in embryonic and early postnatal brain development
and contributes to the pathology of neurodegenerative diseases. Here, we report that activation of the P2X7 nucleotide receptor (P2X7R) in rat primary cortical neurons (rPCNs) causes biochemical (i.e., caspase activation) and morphological (i.e., nuclear
condensation and DNA fragmentation) changes characteristic of apoptotic cell death. Caspase-3 activation and DNA fragmentation
in rPCNs induced by the P2X7R agonist BzATP were inhibited by the P2X7R antagonist oxidized ATP (oATP) or by pre-treatment of cells with P2X7R antisense oligonucleotide indicating a direct involvement of the P2X7R in nucleotide-induced neuronal cell death. Moreover, Z-DEVD-FMK, a specific and irreversible cell permeable inhibitor of
caspase-3, prevented BzATP-induced apoptosis in rPCNs. In addition, a specific caspase-8 inhibitor, Ac-IETD-CHO, significantly
attenuated BzATP-induced caspase-9 and caspase-3 activation, suggesting that P2X7R-mediated apoptosis in rPCNs occurs primarily through an intrinsic caspase-8/9/3 activation pathway. BzATP also induced the
activation of C-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated kinases (ERK1/2) in rPCNs, and pharmacological
inhibition of either JNK1 or ERK1/2 significantly reduced caspase activation by BzATP. Taken together, these data indicate
that extracellular nucleotides mediate neuronal apoptosis through activation of P2X7Rs and their downstream signaling pathways involving JNK1, ERK and caspases 8/9/3. 相似文献