首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4′,7-dihydroxyflavone, 4′,7-Dihydroxyflavanone, and 4,4′-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture.  相似文献   

4.
5.
6.
7.
Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots.  相似文献   

8.
Traces of luteolin, an important rhizobial nod gene inducer in Rhizobium meliloti, are released by alfalfa (Medicago sativa L.) seeds, but most luteolin in the seed exudate is conjugated as luteolin-7-O-glucoside (L7G). Processes affecting the production of luteolin from L7G in seed exudate are poorly understood. Results from this study establish that (a) seed coats are the primary source of flavonoids, including L7G, in seed exudate; (b) these flavonoids exist in seeds before imbibition; and (c) both the host plant and the symbiotic R. meliloti probably can hydrolyze L7G to luteolin. Glycolytic cleavage of L7G is promoted by glucosidase activity released from sterile seeds during the first 4 hours of imbibition. Thus, L7G from imbibing alfalfa seeds may serve as a source of the nod-gene-inducing luteolin and thereby facilitate root nodulation by R. meliloti.  相似文献   

9.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

10.
11.
12.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

13.
The wood of Platymiscium praecox Mart. (Leguminosae-Lotoideae) contains sitosterol, 4,2′,4′-trihydroxychalcone, (2R)-7-hydroxyflavanone, (±)-7,4′-dihydroxyflavanone, (2S, 3S)-3,7-dihydroxyflavanone, 3,7-dihydroxyflavone, 3,7,4′-trihydroxyflavone, 6,7-dihydroxy-4′-methoxyisoflavone and 6,7-dimethoxycoumarin. It also contains three novel compounds: 7-hydroxy-4-methoxy-5-methylcoumarin, 7-O-glucosyloxy-4-methoxy-5-methylcoumarin and 7-hydroxy-4,8-dimethoxy-5-methylcoumarin.  相似文献   

14.
15.
We show that expression of common nodulation genes in Rhizobium meliloti is under positive as well as negative control. A repressor protein was found to be involved in the negative control of nod gene expression. Whereas the activator NodD protein binds to the conserved cis-regulatory element (nod-box) required for coordinated regulation of nod genes, the repressor binds to the overlapping nodD1 and nodA promoters, at the RNA polymerase binding site. A model depicting the possible interaction of the plant-derived nod gene inducer (luteolin), the NodD and the repressor with the nod promoter elements is presented. Mutants lacking the repressor exhibited delayed nodulation phenotype, indicating that fine tuning of nod gene expression is required for optimal nodulation of the plant host.  相似文献   

16.
Using a plate induction assay, we demonstrate that alfalfa exudes inducer of Rhizobium meliloti nodulation genes. The inducer is exuded from the infectible zone of the root, accumulates to at least 1 micromolar, and is not affected by 10 millimolar nitrate. No zones of inhibition are observed. A nodulation minus mutant line of alfalfa, MN-1008, exudes normal levels of inducer. R. meliloti grown in rich medium requires ten-fold higher concentrations of luteolin to achieve half-maximal induction as compared to cells grown in a minimal medium. Flavonoids other than luteolin are found to have activity in R. meliloti nodulation gene induction assays. The compounds apigenin and eriodictyol have activities two-fifths and one-seventh that of luteolin, respectively. Several of the flavonoids tested (morin = naringenin > kaempferol = chrysin > quercetin = fisetin = hesperitin) demonstrate antagonistic activity toward induction by luteolin. The most effective antagonist is the coumarin, umbelliferone.  相似文献   

17.
 Eight compounds exuded from young roots of black locust (Robinia pseudoacacia) were separated by two-dimensional HPTLC, by HPLC and GC, and were identified by spectroscopic methods (ultraviolet/visible spectroscopy and mass spectrometry) as 4′,7-dihydroxyflavone, apigenin, naringenin, chrysoeriol and isoliquiritigenin. Structural assignments were confirmed by comparison with authentic standards. The capacity to induce β-galactosidase activity in Rhizobium sp. NGR234 containing a nod box::lacZ fusion on plasmid pA27 identified these flavonoids and the chalcone as nod gene inducers. This indicates the important role of these compounds in nodulation of this legume tree. Received: 26 July 1996 / Accepted: 9 September 1996  相似文献   

18.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

19.
In this work, we examined the profile of metabolites produced from the doubly para-substituted biphenyl analogs 4,4′-dihydroxybiphenyl, 4-hydroxy-4′-chlorobiphenyl, 3-hydroxy-4,4′-dichlorobiphenyl, and 3,3′-dihydroxy-4,4′-chlorobiphenyl by biphenyl-induced Pandoraea pnomenusa B356 and by its biphenyl dioxygenase (BPDO). 4-Hydroxy-4′-chlorobiphenyl was hydroxylated principally through a 2,3-dioxygenation of the hydroxylated ring to generate 2,3-dihydro-2,3,4-trihydroxy-4′-chlorobiphenyl and 3,4-dihydroxy-4′-chlorobiphenyl after the removal of water. The former was further oxidized by the biphenyl dioxygenase to produce ultimately 3,4,5-trihydroxy-4′-chlorobiphenyl, a dead-end metabolite. 3-Hydroxy-4,4′-dichlorobiphenyl was oxygenated on both rings. Hydroxylation of the nonhydroxylated ring generated 2,3,3′-trihydroxy-4′-chlorobiphenyl with concomitant dechlorination, and 2,3,3′-trihydroxy-4′-chlorobiphenyl was ultimately metabolized to 2-hydroxy-4-chlorobenzoate, but hydroxylation of the hydroxylated ring generated dead-end metabolites. 3,3′-Dihydroxy-4,4′-dichlorobiphenyl was principally metabolized through a 2,3-dioxygenation to generate 2,3-dihydro-2,3,3′-trihydroxy-4,4′-dichlorobiphenyl, which was ultimately converted to 3-hydroxy-4-chlorobenzoate. Similar metabolites were produced when the biphenyl dioxygenase of Burkholderia xenovorans LB400 was used to catalyze the reactions, except that for the three substrates used, the BPDO of LB400 was less efficient than that of B356, and unlike that of B356, it was unable to further oxidize the initial reaction products. Together the data show that BPDO oxidation of doubly para-substituted hydroxychlorobiphenyls may generate nonnegligible amounts of dead-end metabolites. Therefore, biphenyl dioxygenase could produce metabolites other than those expected, corresponding to dihydrodihydroxy metabolites from initial doubly para-substituted substrates. This finding shows that a clear picture of the fate of polychlorinated biphenyls in contaminated sites will require more insights into the bacterial metabolism of hydroxychlorobiphenyls and the chemistry of the dihydrodihydroxylated metabolites derived from them.  相似文献   

20.
Most cultures belonging to the “Erwinia chrysanthemi group” of soft-rot bacteria form traces of a blue, extracellular, water-insoluble pigment. This pigment is generally not found in cultures of the other members of the genus Erwinia. The blue substance has been isolated and purified from three members of the E. chrysanthemi group; it has been identified as indigoidine, 5,5′-diamino-4,4′-dihydroxy-3,3′-diazadiphenoquinone-(2,2′).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号