首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

2.
Integrins alpha2beta1, alphaXbeta2, and alphaVbeta3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the alpha2beta1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the alphaXbeta2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of alpha2beta1, alphaXbeta2, and alphaVbeta3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events. Many laboratory-adapted human, monkey, and bovine viruses used integrins, whereas all porcine viruses were integrin independent. The integrin-using rotavirus strains each interacted with all three integrins. Integrin usage related to VP4 serotype independently of sialic acid usage. Analysis of rotavirus reassortants and assays of virus binding and infectivity in integrin-transfected cells showed that VP4 bound alpha2beta1, and VP7 interacted with alphaXbeta2 and alphaVbeta3 at a postbinding stage. DGEA inhibited rotavirus binding to alpha2beta1 and infectivity, whereas GPRP binding to alphaXbeta2 inhibited infectivity but not binding. The truncated VP5* subunit of VP4, expressed as a glutathione S-transferase fusion protein, bound the expressed alpha2 I domain. Alanine mutagenesis of D308 and G309 in VP5* eliminated VP5* binding to the alpha2 I domain. In a novel process, integrin-using viruses bind the alpha2 I domain of alpha2beta1 via DGE in VP4 and interact with alphaXbeta2 (via GPR) and alphaVbeta3 by using VP7 to facilitate cell entry and infection.  相似文献   

3.
The extracellular matrix protein osteopontin (OPN) interacts with a number of integrins, namely alphavbeta1, alphavbeta3, alphavbeta5, alpha9beta1, alpha8beta1, and alpha4beta1. We have investigated the interaction of alpha5beta1 integrin with OPN using K562 cells, which only express alpha5beta1. alpha5beta1 is in a low activation state in this cell line, but can be stimulated to a higher activation state by the phorbol ester TPA. Treating K562 wild-type cells (K562-WT) with TPA stimulated an interaction between alpha5beta1 and OPN. No interaction was seen in the absence of TPA. alpha5beta1 selectively interacted with a GST fusion protein of the N-terminal fragment of OPN (aa17-168), which is generated in vivo by thrombin cleavage of OPN. Expression of the alpha4 integrin in K562 cells (K562-alpha4beta1) stimulated alpha5beta1-dependent binding to aa17-168 in the absence of TPA, suggesting that alpha4beta1 activates alpha5beta1 in K562 cells. Adhesion via alpha5beta1 is mediated by the Arg-Gly-Asp (RGD) motif of OPN, as mutating this sequence to Arg-Ala-Asp (RAD) blocked binding of both cell types. These data demonstrate that thrombin cleavage regulates the adhesive properties of OPN and that alpha5beta1 integrin can interact with thrombin-cleaved osteopontin when in a high activation state.  相似文献   

4.
The ligand specificity of the alpha 3A beta 1 integrin was analyzed using K562 cells transfected with full-length alpha 3A cDNA and was compared with that of alpha 6A beta 1 in similarly transfected K562 cells. Clones were obtained that showed comparable surface expression of either alpha 3A beta 1 or alpha 6A beta 1 integrins. Those expressing alpha 3A beta 1 attached to and spread on immunopurified human kalinin and cellular matrices containing human kalinin, which is a particular isoform of laminin. In addition, alpha 3A transfectants adhered to bovine kidney laminins possessing a novel A chain variant. Binding to kalinin was blocked by a monoclonal antibody against the A chain constituent of kalinin and adhesion to both kalinin and kidney laminins by anti-alpha 3 and beta 1 monoclonal antibodies. The alpha 3A transfected cells bound more strongly to kalinin and bovine kidney laminins after treatment with the beta 1 stimulatory antibody TS2/16. A distinctly weaker and activation-dependent adhesion of alpha 3A transfectants was observed on human placental laminins possessing the Am chain variant (merosin), and no adhesion occurred on bovine heart laminins and murine EHS tumor laminin. Further inactive substrates were fibronectin, nidogen, and collagen types IV and VI, indicating that the alpha 3A beta 1 integrin is a much less promiscuous receptor than thought before. By contrast, alpha 6A transfected cells adhered to all laminin isoforms when stimulated with TS2/16. Adhesion also occurred only on bovine kidney laminins in the absence of TS2/16. These results demonstrate that both alpha 3A beta 1 and alpha 6A beta 1 integrins are typical laminin receptors but that their affinity and activation dependence for binding to various laminin isoforms differ considerably.  相似文献   

5.
Integrin-using rotaviruses bind MA104 cell surface alpha2beta1 integrin via the Asp-Gly-Glu (DGE) sequence in virus spike protein VP4 and interact with alphaxbeta2 integrin during cell entry through outer capsid protein VP7. Infection is inhibited by the alpha2beta1 ligand Asp-Gly-Glu-Ala (DGEA) and the alphaxbeta2 ligand Gly-Pro-Arg-Pro (GPRP), and virus-alpha2beta1 binding is increased by alpha2beta1 activation. In this study, we analyzed the effects of monomers and polymers containing DGEA-, GPRP-, and DGEA-related peptides on rotavirus binding and infection in intestinal (Caco-2) and kidney (MA104) cells and virus binding to recombinant alpha2beta1. Blockade of rotavirus-cell binding and infection by peptides and anti-alpha2 antibody showed that Caco-2 cell entry is dependent on virus binding to alpha2beta1 and interaction with alphaxbeta2. At up to 0.5 mM, monomeric DGEA and DGAA inhibited binding to alpha2beta1 and infection. At higher concentrations, DGEA and DGAA showed a reduced ability to inhibit virus-cell binding and infection that depended on virus binding to alpha2beta1 but occurred without alteration in cell surface expression of alpha2, beta2, or alphavbeta3 integrin. This loss of DGEA activity was abolished by genistein treatment and so was dependent on tyrosine kinase signaling. It is proposed that this signaling activated existing cell surface alpha2beta1 to increase virus-cell attachment and entry. Polymeric peptides containing DGEA and GPRP or GPRP only were inhibitory to SA11 infection at approximately 10-fold lower concentrations than peptide monomers. As polymerization can improve peptide inhibition of virus-receptor interactions, this approach could be useful in the development of inhibitors of receptor recognition by other viruses.  相似文献   

6.
Rotavirus infection of permissive cells is a multi-step process that requires interaction with several cell surface receptors. Integrins alpha2beta1, alpha4beta1, alphaXbeta2, and alphavbeta3 are involved in the attachment and entry into permissive cells for many rotavirus strains. However, possible roles of known partners of these integrins in this process have not been studied. Here, the specificities of new monoclonal antibodies directed to beta1 and beta2 integrins were determined using integrin-transfected cells. The ability of monoclonal antibodies to integrin partners CD82, CD151, CD321, and CD322 to bind rotavirus-permissive cell lines (MA104, Caco-2, and RD) and K562 cells expressing or lacking alpha4beta1 also was investigated. CD82 and CD151 were expressed on K562, alpha4-K562, and RD cells. CD321-specific antibodies bound K562, alpha4-K562, MA104, and Caco-2 cells. CD322 expression was detected on MA104 but not Caco-2 cells. Antibodies to CD82, CD151, CD321, and CD322 that bound these cells were investigated for their ability to inhibit cellular attachment and entry by rotaviruses. Antibody blockade of these integrin-associated proteins did not affect cell attachment or entry of the integrin-using rhesus rotavirus RRV or porcine rotavirus CRW-8, which uses alpha4beta1 integrin for infection. Antibody blockade of CD322 did not alter cell attachment or infectivity by human rotavirus strain RV-3, so RV-3 infection was independent of CD322. Overall, these studies indicate that CD82, CD151, CD321, and CD322 are unlikely to play a role in rotavirus-cell binding or entry.  相似文献   

7.
The pluripotential hematopoietic cell line K562 was studied as a model of inducible integrin expression accompanying differentiation. Differentiation along the megakaryocytic pathway was induced with phorbol 12,13-dibutyrate and differentiation along the erythroid pathway with hemin. Induction of megakaryocytic differentiation was associated with changes in cell morphology and with increased cell-cell and cell-substrate adhesion and spreading. Erythroid differentiation was not associated with changes in morphology or adhesion. Cell surface expression of the IIb-IIIa and alpha 2 beta 1 integrins increased markedly with phorbol treatment but decreased with hemin treatment. Phorbol-treated K562 cells, but not control cells or hemin-treated cells, adhered to collagen substrates in a Mg(2+)-dependent manner which was specifically inhibited by a monoclonal antibody directed against the alpha 2 beta 1 integrin. Northern blot analysis revealed that megakaryocytic differentiation of K562 cells was accompanied by de novo expression of the alpha 2 integrin mRNA with no change in the level of mRNA for the beta 1 subunit. K562 cells provide a model of differentiation-dependent, regulated integrin expression in which expression is up- or down-regulated depending upon the differentiation pathway selected.  相似文献   

8.
9.
10.
The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Here we describe the isolation of a novel metalloproteinase/disintegrin, which is a potent inhibitor of the collagen binding to alpha2beta1 integrin. This 55-kDa protein (alternagin) and its disintegrin domain (alternagin-C) were isolated from Bothrops alternatus snake venom. Amino acid sequencing of alternagin-C revealed the disintegrin structure. Alternagin and alternagin-C inhibit collagen I-mediated adhesion of K562-alpha2beta1-transfected cells. The IC50 was 134 and 100 nM for alternagin and alternagin-C, respectively. Neither protein interfered with the adhesion of cells expressing alphaIIbeta3, alpha1beta1, alpha5beta1, alpha4beta1 alphavbeta3, and alpha9beta1 integrins to other ligands such as fibrinogen, fibronectin, and collagen IV. Alternagin and alternagin-C also mediated the adhesion of the K562-alpha2beta1-transfected cells. Our results show that the disintegrin-like domain of alternagin is responsible for its ability to inhibit collagen binding to alpha2beta1 integrin.  相似文献   

11.
Integrins alpha9beta1 and alpha4beta1 form a distinct structural class, but while alpha4beta1 has been subjected to extensive study, alpha9beta1 remains poorly characterized. We have used the small molecule N-(benzenesulfonyl)-(L)-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)tyrosine (3) to investigate the biochemical properties of alpha9beta1 and directly compare these properties with those of alpha4beta1. Compound 3 has a high affinity for both integrins with K(D) values of < or =3 and 180 pM for alpha9beta1 in 1 mM Mn2+ (activating) and 1 mM Ca2+ and 1 mM Mg2+ (nonactivating) conditions and < or =5 and 730 pM for alpha4beta1 under the corresponding conditions. Ca2+ treatment promoted the binding of 3 to both integrins (EC50 = 30 microM Ca2+ in both cases). Compound 3 binding to both integrins was also stimulated by the addition of the activating monoclonal antibody TS2/16. These findings indicate that the mechanisms by which metal ions and TS2/16 regulate ligand binding to alpha9beta1 and alpha4beta1 are similar. The binding of 3 to both integrins induced the mAb 9EG7 LIBS epitope, a property consistent with occupancy of the receptor's ligand binding site by 3. But whereas EGTA treatment inhibited the binding of 9EG7 to alpha4beta1, it stimulated the binding of 9EG7 to alpha9beta1. The 9EG7 and TS2/16 effects point to contributions of the beta1-chains on binding. Cross-linking data revealed that the integrin alpha-chains are also involved in binding the small molecule, as stable linkages were observed on both the alpha9 chain of alpha9beta1 and the alpha4 chain of alpha4beta1. Extensive structure-activity analyses with natural and synthetic ligands indicate distinct features of the ligand binding pockets. Most notable was the estimated >1000-fold difference in the affinity of the integrins for VCAM-1, which binds alpha4beta1with an apparent K(D) of 10 nM and alpha9beta1 with an apparent K(D) of >10 microM. Differences were also seen in the binding of alpha9beta1 and alpha4beta1 to osteopontin. Compound 3 competed effectively for the binding of VCAM-1 and osteopontin to both integrins. While these studies show many similarities in the biochemical properties of alpha9beta1 and alpha4beta1, they identify important differences in their structure and function that can be exploited in the design of selective alpha9beta1 and alpha4beta1 inhibitors.  相似文献   

12.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

13.
Integrins alpha3beta1 and alpha6beta1 are two major laminin receptors expressed on the surface of mammalian cells. Interactions of cells with laminins through these integrins play important roles in cell adhesion, differentiation, motility, and matrix assembly. To determine the binding specificity and affinity of these integrins toward various types of laminins at the level of direct protein-protein interactions, we purified integrins alpha3beta1 and alpha6beta1 from human placenta, and examined their binding to a panel of laminin isoforms, each containing distinct alpha chains (i.e., laminin-1, laminin-2/4, laminin-5, laminin-8, and laminin-10/11). Integrin alpha3beta1 showed clear specificity for laminin-5 and laminin-10/11, with no significant binding to laminin-1, laminin-2/4, and laminin-8. In contrast, integrin alpha6beta1 showed a broad spectrum of specificity, with apparent binding affinity in the following order: laminin-10/11 > laminin-5 > laminin-1 > laminin-2/4 congruent with laminin-8. Integrin titration assays demonstrated that laminin-10/11 was the most preferred ligand among the five distinct laminin isoforms for both alpha3beta1 and alpha6beta1 integrins. Given that laminin-10/11 is the major basement membrane component of many adult tissues, the interaction of laminin-10/11 with these integrins should play a central role in the adhesive interactions of epithelial cells with underlying basement membranes.  相似文献   

14.
The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains.  相似文献   

15.
The integrins alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1) are referred to as a collagen receptor subgroup of the integrin family. Recently, both alpha(1)beta(1) and alpha(2)beta(1) integrins have been shown to recognize triple-helical GFOGER (where single letter amino acid nomenclature is used, O = hydroxyproline) or GFOGER-like motifs found in collagens, despite their distinct binding specificity for various collagen subtypes. In the present study we have investigated the mechanism whereby the latest member in the integrin family, alpha(11)beta(1), recognizes collagens using C2C12 cells transfected with alpha(11) cDNA and the bacterially expressed recombinant alpha(11) I domain. The ligand binding properties of alpha(11)beta(1) were compared with those of alpha(2)beta(1). Mg(2+)-dependent alpha(11)beta(1) binding to type I collagen required micromolar Ca(2+) but was inhibited by 1 mm Ca(2+), whereas alpha(2)beta(1)-mediated binding was refractory to millimolar concentrations of Ca(2+). The bacterially expressed recombinant alpha(11) I domain preference for fibrillar collagens over collagens IV and VI was the same as the alpha(2) I domain. Despite the difference in Ca(2+) sensitivity, alpha(11)beta(1)-expressing cells and the alpha(11) I domain bound to helical GFOGER sequences in a manner similar to alpha(2)beta(1)-expressing cells and the alpha(2) I domain. Modeling of the alpha I domain-collagen peptide complexes could partially explain the observed preference of different I domains for certain GFOGER sequence variations. In summary, our data indicate that the GFOGER sequence in fibrillar collagens is a common recognition motif used by alpha(1)beta(1), alpha(2)beta(1), and also alpha(11)beta(1) integrins. Although alpha(10) and alpha(11) chains show the highest sequence identity, alpha(2) and alpha(11) are more similar with regard to collagen specificity. Future studies will reveal whether alpha(2)beta(1) and alpha(11)beta(1) integrins also show overlapping biological functions.  相似文献   

16.
Human adenovirus type 2 (Ad2) enters host cells by receptor-mediated endocytosis, an event mediated by the virus penton base binding to cell surface integrins alpha v beta 3 and alpha v beta 5. While both alpha v integrins promote virus internalization, alpha v beta 5 is involved in the subsequent event of membrane permeabilization. Cells transfected with the beta 5 or beta 3 subunit, expressing either alpha v beta 5 and alpha v beta 3, respectively, were capable of supporting Ad2 infection to varying degrees. In this case, cells expressing alpha v beta 5 were significantly more susceptible to Ad2-induced membrane permeabilization, as well as to Ad2 infection, than cells expressing alpha v beta 3. Adenovirus-mediated gene delivery was also more efficient in cells expressing alpha v beta 5. These results suggest that the interaction of alpha v beta 5 with Ad2 penton base facilitates the subsequent step of virus penetration into the cell. These studies provide evidence for the involvement of a cellular receptor in virus- mediated membrane permeabilization and suggest a novel biological role for integrin alpha v beta 5 in the infectious pathway of a human adenovirus.  相似文献   

17.
We recently characterized an anti-tumor protein termed angiocidin. Here, we report that angiocidin may inhibit angiogenesis by binding collagen and its receptors. Angiocidin bound purified type I collagen and alpha2beta1 with high affinity. K562 cells expressing alpha2beta1 bound and adhered to angiocidin while K562 cells which only expressed alpha5beta1 integrin showed no binding and adhesion. Binding was specific since a neutralizing antibody against alpha2beta1 inhibited binding but antibodies against alpha5beta1 had no effect. Additionally, angiocidin co-localized with alpha2beta1 on K562 alpha2beta1 transfected cells, pancreatic cancer colo 357 cells, breast cancer MB-231 cells and human umbilical endothelial vein (HUVE) cells. In an alpha2beta1-dependent collagen gel angiogenesis assay, angiocidin showed potent inhibitory activity. We identified a 20-amino-acid amino terminal peptide of angiocidin that bound both alpha2beta1 and type I collagen. This peptide promoted alpha2beta1-dependent cell adhesion and inhibited tumor growth and angiogenesis. Taken together, these results are consistent with the conclusion that the anti-tumor activity of angiocidin arises from its ability to ligate collagen and alpha2beta1 on endothelial cells and tumor cells. Our results provide support for the concept that targeting matrix-cell interactions is a viable strategy for the development of anti-cancer therapeutics.  相似文献   

18.
In an attempt to identify the rotavirus receptor, we tested 46 cell lines of different species and tissue origins for susceptibility to infection by three N-acetyl-neuraminic (sialic) acid (SA)-dependent and five SA-independent rotavirus strains. Susceptibility to SA-dependent or SA-independent rotavirus infection varied depending on the cell line tested and the multiplicity of infection (MOI) used. Cells of renal or intestinal origin and transformed cell lines derived from breast, stomach, bone, or lung were all susceptible to rotavirus infection, indicating a wider host tissue range than previously appreciated. Chinese hamster ovary (CHO), baby hamster kidney (BHK-21), guinea pig colon (GPC-16), rat small intestine (Rie1), and mouse duodenum (MODE-K) cells were found to support only limited rotavirus replication even at MOIs of 100 or 500, but delivery of rotavirus particles into the cytoplasm by lipofection resulted in efficient rotavirus replication. The rotavirus cell attachment protein, the outer capsid spike protein VP4, contains the sequence GDE(A) recognized by the VLA-2 (alpha2beta1) integrin, and to test if VLA-2 is involved in rotavirus attachment and entry, we measured infection in CHO cells that lack VLA-2 and CHO cells transfected with the human alpha2 subunit (CHOalpha2) or with both the human alpha2 and beta1 subunits (CHOalpha2beta1) of VLA-2. Infection by SA-dependent or SA-independent rotavirus strains was 2- to 10-fold more productive in VLA-2-expressing CHO cells than in parental CHO cells, and the increased susceptibility to infection was blocked with anti-VLA-2 antibody. However, the levels of binding of rotavirus to CHO, CHOalpha2, and CHOalpha2beta1 cells were equivalent and were not increased over binding to susceptible monkey kidney (MA104) cells or human colonic adenocarcinoma (Caco-2, HT-29, and T-84) cells, and binding was not blocked by antibody to the human alpha2 subunit. Although the VLA-2 integrin promotes rotavirus infection in CHO cells, it is clear that the VLA-2 integrin alone is not responsible for rotavirus cell attachment and entry. Therefore, VLA-2 is not involved in the initial attachment of rotavirus to cells but may play a role at a postattachment level.  相似文献   

19.
The amino acid sequence Arg-Gly-Asp (RGD) is highly conserved on the VP1 proteins of different serotypes and subtypes of foot-and-mouth disease virus (FMDV) and is essential for cell attachment. This sequence is also found in certain extracellular matrix proteins that bind to a family of cell surface receptors called integrins. Within the Picornaviridae family, enterovirus coxsackievirus A9 also has an RGD motif on its VP1 capsid protein and has recently been shown to utilize the vitronectin receptor integrin alpha V beta 3 as a receptor on monkey kidney cells. Competition binding experiments between type A12 FMDV and coxsackievirus A9 using BHK-21 and LLC-MK2 cells revealed shared receptor specificity between these two viruses. Polyclonal anti-serum to the vitronectin receptor and a monoclonal antibody to the alpha V subunit inhibited both FMDV binding and plaque formation, while a monoclonal antibody to the beta 3 subunit inhibited virus binding. In contrast, antibodies to the fibronectin receptor (alpha 5 beta 1) or to the integrin (alpha V beta 5) had no effect on either binding or plaque formation. These data demonstrate that the alpha V beta 3 vitronectin receptor can function as a receptor for FMDV.  相似文献   

20.
The integrin VLA-2 was previously found to bind to either collagen alone, or collagen plus laminin, but the mechanism for this cell- specific functional difference was unknown. Here we transfected VLA-2 alpha 2 subunit cDNA into K562 cells and obtained VLA-2 (called Form-O) which bound to neither collagen nor laminin. We then used a Matrigel selection procedure to enrich for a minor subpopulation of K562 cells stably expressing a form of VLA-2 (Form-C) that bound to collagen but not laminin. In contrast, the same alpha 2 cDNA transfected into RD cells yielded VLA-2 (Form-CL) which bound to both collagen and laminin. These Form-O, -C, and -CL activities were stably expressed during extended cell culture, and could not be qualitatively altered by adding phorbol esters or by exchaning the resident divalent cations. However, addition of stimulatory anti-beta 1 antibodies (TS2/16, A-1A5) rapidly converted VLA-2 Form-O and Form-C into Form-CL. Anti-beta 1 antibody stimulation of VLA-2 activity was observed not only on whole cells, but also with solubilized receptors. These results suggest (a) that the ligand binding specificity of VLA-2 can be determined by its cellular environment, rather than by variations in the primary sequence of the alpha 2 subunit, (b) that stably inactive or partly active VLA-2 can be rapidly converted to a fully active form through conformational changes initiated at a nonligand binding site on the beta 1 subunit, and (c) that the mechanisms for VLA-2 stimulation by phorbol ester and by antibody are quite distinct, because the latter does not require an intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号