首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Phospholipase D [EC 3.1.4.4] from Streptomyces hachijoensis was purified about 570-fold by column chromatography on DEAE-cellulose and Sephadex G-50 followed by isoelectric focusing. 2. The purified preparation was found to be homogeneous both by immunodiffusion and polyacrylamide disc gel electrophoresis. 3. The isoelectric point was found to be around pH 8.6 and the molecular weight was about 16,000. 4. The enzyme has maximal activity at pH 7.5 at 37 degrees. The optimal temperature is around 50 degrees at pH 7.5, using 20 min incubation. 5. The enzyme was stable at 50 degrees for 90 min. At neutral pH, between 6 and 8, the enzyme retained more than 95% of its activity on 24 hr incubation at 25 degrees. However, the enzyme lost 80% of its activity under the same conditions at pH 4.0. 6. The enzyme was stimulated slightly by Ca2+, Mn2+, and Co2+, and significantly by Triton X-100 and ethyl ether. It was inhibited by Sn2+, Fe2+, Fe3+, Al3+, EDTA, sodium dodecyl sulfate, sodium cholate, and cetylpyridinium chloride. 7. This phospholipase D hydrolyzes phosphatidylethanolamine, phosphatidylcholine, cardiolipin, sphingomyelin, phosphatidylserine, and lysophosphatidylcholine, liberating the corresponding bases. 8. The Km value was 4mM, determined with phosphatidylethanolamine as a substrate.  相似文献   

2.
Phospholipase C isolated from porcine mesenteric lymph node lymphocytes was distributed between the soluble and particulate fractions. Enzyme activity was found predominantly in the soluble fraction with optimal activity at pH 5.5. Gel filtration chromatography of the soluble phospholipase C revealed that it was composed of multiple species of enzyme activity. The activity associated with the particulate fraction had optimal activity at pH 7.0, as also did one of the species of soluble phospholipase C. Cellulose phosphate chromatography resolved the major soluble form into two species designated PLC-A and PLC-B. Both phenyl-Sepharose chromatography and hydroxyapatite chromatography purified these species still further. PLC-A and PLC-B demonstrated similar activities against phosphatidylinositol with a pH optimum near 5.5. The phospholipase C activities were abolished against this substrate by the addition of 1 mM-EDTA. When assayed in the presence of Ca2+-EDTA buffers providing a range of Ca2+ free concentrations, both enzymes exhibited optimal activity near 10(-3) M free Ca2+, but PLC-B was inhibited above this concentration more than PLC-A. PLC-B exhibited markedly lower activity against phosphatidylinositol 4,5-bisphosphate, suspended as liposomes of the pure phospholipid, than did PLC-A.  相似文献   

3.
An enzyme hydrolyzing nigeran (alternating alpha-1,3- and alpha-1,4-linked glucan) was purified from the culture filtrate of Streptomyces sp. J-13-3, which lysed the cell wall of Aspergillus niger, by percipitation with ammonium sulfate and column chromatographies on DEAE-Sephadex A-50, CM-Sephadex C-50, chromatofocusing, and Sephadex G-100. The final preparation was homogenous in polyacrylamide gel electrophoresis (PAGE). The molecular weight of the enzyme was 68,000 by SDS-PAGE and gel filtration. The optimum pH and temperature for the enzyme activity were 6.0 and 50 degrees C, respectively. The enzyme was stable in the pH range from 6.0 to 8.0 and up to 50 degrees C. The enzyme activity was inhibited significantly by Hg+, Hg2+, and p-chloromercuribenzoic acid. The Km (mg/ml) for nigeran was 3.33. The enzyme specifically hydrolyzed nigeran into nigerose and nigeran tetrasaccharide by an endo-type of action, indicating it to be a mycodextranase (EC 3.2.1.61) that splits only the alpha-1,4-glucosidic linkages in nigeran.  相似文献   

4.
A phospholipase C which hydrolyzes [14C]phosphatidylcholine has been purified 1782-fold from 70% ammonium sulfate extract of bull seminal plasma. Purification steps included acid precipitation, chromatography on DEAE-Sephacel, concanavalin A, octyl-Sepharose 4B and Ultrogel AcA 34. The final step provided homogeneous phospholipase C as determined by polyacrylamide gel electrophoresis. The enzyme comprised two subunits, Mr 69,000 and Mr 55,000, respectively. The enzyme had an optimum at pH 7.2 and pI 5.0. EDTA, Cd2+, Pb2+, Ni2+, Fe2+, and Zn2+ inhibited phospholipase C activity. Km and Vmax on p-nitrophenyl phosphorylcholine and phosphatidylcholine substrates were 20 mM and 17 mumol/min/mg of the purified enzyme and 100 microM and 18 mumol/min/mg of the purified enzyme, respectively. The enzyme appeared to be localized in the acrosome as judged by the binding of anti-phospholipase C to the acrosome. This phospholipase C, unlike other known phospholipases (C), did not hydrolyze [1-14C]phosphatidylinositol. The testicular extract of the guinea pig contained inactive phospholipase C which was activated on incubation with acrosin and trypsin but not chymotrypsin.  相似文献   

5.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

6.
A membrane preparation from porcine platelets catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol to form monoacylglycerol and inositol phosphates. The hydrolysis was optimal at pH 9. The addition of Ca2+ did not enhance the hydrolysis, but the enzyme was inhibited completely by EGTA. The EGTA-inactivated enzyme was partially reactivated by Ca2+; Mn2+, Mg2+, and Zn2+ were much less effective or ineffective for the reactivation. The phospholipase C was apparently specific for lysophosphatidylinositol; phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, and lysophosphatidic acid were not hydrolyzed at significant rates under the conditions used. Phospholipase C with these properties has not been reported previously.  相似文献   

7.
Phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) from Pseudomonas aureofaciens was purified 3600-fold from the culture filtrate with a recovery of 1.6%. Purification was performed with the useof (NH4)2SO4 precipitation, Sephadex G-100 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50. The purified enzyme appeared to be homogeneous as revealed by polyacrylamide disc gel electrophoresis at pH 9.3. The molecular weight was estimated to be 35 000 by gel filtration on Sephadex G-75. Under our experimental conditions, phosphatidylethanolamine was more rapidly hydrolysed than phosphatidylcholine. Lyso forms of these two phosphatides were poor substrates. Phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, cardiolipin and sphingomyelin were not hydrolysed. The enzyme activity with phosphatidylcholine as substrate was slightly stimulated by Ca2+, Mg2+, and Mn2+. However, these cations inhibited the activity with phosphatidylethanolamine as substrate. An anionic detergent, sodium deoxycholate, slightly enhanced the activity when phosphatidylcholine and phosphatidylethanolamine were used as substrates. A cationic detergent, cetyltrimethylammonium bromide, inhibited enzyme activity. EDTA and o-henanthroline inhibited the activity of the enzyme to a marked degree.  相似文献   

8.
Using [1-14C]oleate-labelled autoclaved Escherichia coli as substrate, we demonstrate that many, but not all, commercial preparations of xanthine oxidase contain phospholipase A2 activity as a contaminant. Phospholipase A2 activity (64.3-545.6 nmol phospholipid hydrolyzed per min per mg protein) was optimal in the neutral to alkaline pH range, was Ca2+-dependent, and was unaffected by the addition of xanthine. Phospholipase A2 activity was totally inhibited by 1.0 mM EDTA while radical production by xanthine plus xanthine oxidase was unaffected by EDTA. Even chromatographically purified xanthine oxidase (Sigma Grade III) contained substantial phospholipase A2 activity (64.3 nmol/min per mg). Since the preparation of xanthine oxidase employs proteolytic digestion of milk or buttermilk by pancreatin, an extract of pancreas which is an organ rich in phospholipase A2 activity, we speculate that the contaminant phospholipase A2 is introduced by this treatment. Because xanthine oxidase is used extensively to study free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular phospholipase A2 may have influenced previously published reports and such studies in the future should be interpreted with care.  相似文献   

9.
A membrane bound phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) from human platelets has been purified 3500-fold, and partially characterized. Phospholipase A2 activity was assayed using [1(-14)C] oleate-labeled Escherichia coli or sonicated dispersions of synthetic phospholipids. The 2-acyl specificity of the phospholipase activity was confirmed using phosphatidylethanolamine labeled in the C-1 position as substrate. The purified enzyme was maximally active between pH 8.0 and 10.5, and had an absolute requirement for low concentrations of Ca2+. Indomethacin, but not aspirin, inhibited phospholipase A2 activity.  相似文献   

10.
A fungus capable of using carbaryl as the sole source of carbon and energy was isolated from a soil enrichment, and characterized as Aspergillus niger and designated strain PY168. A novel carbaryl hydrolase from cell extract was purified 262-fold to apparent homogeneity with 13.6% overall recovery. It had a monomeric structure with a molecular mass of 50,000 Da and a pI of 4.6, and the enzyme activity was optimal at 45 degrees C and pH 7.5, The activities were strongly inhibited by Hg(2+), Ag+, rho-chloromercuribenzoate, iodoacetic acid, diisofluorophosphate and phenylmethylsulfonyl fluoride but not EDTA and phenanthroline. The purified enzyme hydrolyzed various N-methylcarbamate insecticides. Carbaryl is the preferred substrate.  相似文献   

11.
Abstract

S-PLI, an inhibitor of phospholipase C (PLC) produced by Strepromyces sp. strain No. 6288, was purified from the culture filtrate by salting-out with solid ammonium sulfate, column chromatography on CM-cellulose and gel filtration on Sephadex G-75. The molecular weight of S-PLI was estimated to be 65,000 by SDS-polyacrylamide gel electrophoresis. The inhibitor was found to be a glycoprotein with a composition of 609 amino acids and 19 glucose residues having an isoelectric point at 7.8. S-PLI was stable from pH 3 to 10 at 37°C and up to 40° at pH 6.0. The inhibitory activity showed pH-and temperature-dependence with a maximum around pH 7.0 at 50°C. S-PLI inhibited phospholipase C in a competitive manner (Ki value; 9.5 × 10-6 mM), but did not inhibit S-Hemolysin, phospholipase A2, phospholipase B, phospholipase D and phosphatases. S-PLI is the first reported example of a glycoproteinaceous inhibitor of microbial origin which is able to specifically inhibit phospholipase C.  相似文献   

12.
Phospholipase A2 activity in lysates of mast cells such as rat mastocytoma RBL-2H3 cells and mouse bone marrow-derived IL-3-dependent mast cells (BMMC) was measured using phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) as a substrate. Both types of cells exhibited phospholipase A2 activity with a similar pH profile; the optimum pH observed with PS as a substrate was 5.5-7.4, whereas that with PE or PC was 8.0-9.0. PE and PC bearing an arachidonate at the sn-2 position were cleaved more efficiently by PE, PC-hydrolyzing phospholipase A2 than phospholipids with a linoleate. A monoclonal antibody raised against rabbit platelet 85-kDa cytosolic phospholipase A2 absorbed the PE, PC-hydrolyzing activity. PS-hydrolyzing activity was purified from RBL-2H3 cells and BMMC by sequential heparin-Sepharose, butyl-Toyo-pearl, and reverse-phase HPLC. On reverse-phase HPLC, the PS-hydrolyzing activity of RBL cells was separated into two peaks, A and B. The peak B activity was inhibited by the anti-rat 14-kDa group II phospholipase A2 antibody, while the peak A activity was not. The partially purified peak A activity hydrolyzed PS about 10-fold more efficiently than PE at optimum pH of 5.5-7.4. No appreciable hydrolysis was observed with PC or phosphatidylinositol (PI). Thus, mast cells may express at least three distinct phospholipases A2; 14-kDa group II phospholipase A2, 85-kDa cytosolic arachidonate preferential phospholipase A2, and a novel phospholipase A2 that shows high substrate specificity for PS.  相似文献   

13.
Phospholipase C from the Dallas 1E strain of Legionella pneumophila serogroup 5 was purified from buffered yeast extract culture supernate by ion-exchange chromatography followed by fractionation by manganous chloride and ammonium sulphate precipitation steps. Enzyme activity was assayed by hydrolysis of p-nitrophenylphosphorylcholine and confirmed by release of radioactivity from tritiated L-alpha-dipalmitoylphosphatidylcholine labelled in the methyl groups of choline. After SDS-PAGE, the purified preparation yielded a single band upon Coomassie-blue staining. This protein migrated with an apparent Mr of 50,000-54,000. Phospholipase C activity was maximal at pH greater than or equal to 8.4 and was enhanced in the presence of sorbitol and of several nonionic detergents but was eliminated by SDS. EDTA, Cu2+, Fe2+ and Zn2+ inhibited enzyme activity, whereas Ba2+, Ca2+, Co2+, Mg2+ and Mn2+ restored activity to EDTA-treated material. No haemolytic activity was demonstrated with the purified enzyme.  相似文献   

14.
灰色链霉菌RX-17溶菌酶R1的纯化及性质研究   总被引:6,自引:0,他引:6  
通过硫酸铵分级沉淀,CM-Sephadex C50、CM-Sepharose Fast Flow离子交换层析及Sephadex G-75凝胶过滤层析,从灰色链霉菌(Streptomyces griseus)RX17的发酵上清液中得到了电泳纯的溶菌酶R1,回收率6.89%。测得该酶分子量和等电点分别为16.8kD和9.10,作用于变链球菌(Streptococcus mutans)Ingbritt的最适温度和pH分别为70℃和6.6。R1酶在50℃以下及pH6~9的范围内保持稳定,60℃保温1h,残存酶活20.3%。Mg2+对酶有激活作用,而Zn2+、Cu2+、Fe2+、Cd2+、Pb2+则使酶完全丧失活性,螯合剂、盐酸羟胺、碘乙酸抑制酶活,β-巯基乙醇及表面活性剂则对溶菌有部分促进作用。R1酶溶菌谱广泛,对多种卵清溶菌酶不能作用的G+、G细菌均有溶解能力,对变链球菌、金黄色葡萄球菌(Staphylococcus aureus)、乳杆菌(Lactobacillus)等则呈现高活性。  相似文献   

15.
Membrane-bound phospholipase B was purified to a homogeneous state from Torulaspora delbrueckii cell homogenate. Cell homogenate was extracted with Triton X-100, and the enzyme was precipitated with acetone. The acetone powder was washed repeatedly with Tris-HCl buffer (pH 8.0) until no phospholipae B activity was detected in the soluble fraction. The enzyme was extracted with Triton X-100 from the final residue and purified about 1,390-fold by sequential chromatofocusing, Sepharose 6B, and DEAE-Sephadex A-50 column chromatography. The final preparation showed a single broad protein band on SDS-polyacrylamide gel electrophoresis when stained with silver stain reagent and PAS-reagent. The molecular weight of phospholipase B was about 390,000 and 140,000-190,000 as estimated by gel filtration on Sepharose 6B and SDS-polyacrylamide gel electrophoresis, respectively, suggesting that phospholipase B is an oligomeric protein. The isoelectric point was at pH 4.5. Phospholipase B has two pH optima, one acidic (pH 2.5-3.0) and the other alkaline (pH 7.2-8.0). At acidic pH the phospholipase B activity was greatly increased in the presence of divalent metal ions, although metal ions are not a factor for enzyme activity. On the other hand, at alkaline pH the enzyme required Ca2+ or Mn2+ for activity. The pH- and thermal-stabilities at both pHs were similar. The phospholipase B hydrolyzed all diacylphospholipids tested at acidic pH, but hydrolyzed only phosphatidylcholine at alkaline pH. The hydrolysis rates of lysophospholipids were much higher (about 10-fold) than those of diacylphospholipids at both pHs.  相似文献   

16.
1. Phospholipase A2 (phosphatide 2-acyl-hydrolase, EC 3.1.1.4) activity was shown to occur in the supernatant fraction of a freshly prepared homogenate from the pyloric caecum of starfish (Asterina pectinifera). 2. The phospholipase A2 has been isolated and purified 130-fold by ultracentrifugation, ammonium sulfate precipitation and column chromatographic procedures. 3. The purified enzyme was stable to heat at low pH values and the optimal pH was observed at approximately 9.0. 4. The enzyme activity was activated by Ca2+ and sodium deoxycholate, and was inhibited by EDTA.  相似文献   

17.
Phospholipase A2 was purified from the pyloric ceca of the starfish Asterina pectinifera. The final enzyme preparation was nearly homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 20,000. The optimum pH and temperature of the enzyme were at around pH 9.0 and 50°C, respectively, and the activity was enhanced by sodium deoxycholate and 1 mM or higher concentration of Ca2+. The enzyme had no fatty acid specificity. Starfish phospholipase A2 hydrolyzed phosphatidylcholine more effectively than phosphatidylethanolamine.  相似文献   

18.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

19.
A method of isolating highly purified phospholipase D from Bac. subtilis G-22 is described. It includes ammonium sulphate fractionation, thermal denaturation, chromatography on lipoprotein bound with sepharose 6B and AH-sepharose 4B. The enzyme is 130-fold purified, its yield exceeds 90.0%, its specific activity is 164 units per mg of protein. The homogeneity of the enzyme is demonstrated by polyacrylamide gel electrophoresis, ultracentrifugation, isoelectric focusing and N-terminal amino acid determination by means of dinitrophenylation and dancylation. Proline is found to be N-terminal amino acid. The molecular weight of the enzyme, as determined from gel filtration through Sephadex G-100, is 21500 +/- 300, its sedimentation constant is 1.4S, isoelectric point is at pH 4.2. The molecular weight calculated from amino acid composition, is 21000--22000. Polypeptide chain contains of 196--205 amino acid residues. Phospholipase D develops its maximal activity at pH 8.5 and does not contain free SH-groups. Benzylsulphofluoride does not inhibit the enzyme activity. Phospholipase D is activated by Cd2+, Co2+, Zn2+, Ca2+ and is inhibited by EDTA, pIi50 being about 2.6.  相似文献   

20.
Flavobacterium johnsonae was isolated as a microorganism that produced a beta-glucosidase with hydrolytic activity of beta-glucosyl ester linkages in steviol glycosides. The enzyme was purified to homogeneity from a cell-free extract by streptomycin treatment, ammonium sulfate fractionation, and column chromatographies on S-Sepharose and phenyl-Toyopearl. The molecular mass of the purified enzyme was about 72 kDa by SDS-PAGE. An isoelectric point of pI 8.8 was estimated by isoelectric focusing. The enzyme was most active at pH 7.0, and was stable between pH 3.0 and 9.0. The optimum temperature was 45 degrees C, and the enzyme was stable below 35 degrees C. The enzyme hydrolyzed glucosyl ester linkages at site 19 of rebaudioside A, stevioside, and rubusoside, although it could not degrad beta-glucosidic linkages at site 13 of rebaudioside B or steviol bioside. The enzyme acted on aryl beta-glucosides such as p-nitrophenyl beta-glucoside, phenyl betaglucoside, and salicin, and glucobioses such as sophorose and laminaribiose. The enzyme activity on Rub was inactivated completely by Hg2+, and reduced by Fe3+, Cu2+, p-chloromercuric benzoate, and phenylmethylsulfonyl fluoride (residual activity; 67.9-84.8%). The pNPG hydrolysis was also inactivated to almost the same degrees. Kinetic behaviors in the mixed substrate reactions of rebaudioside A and steviol monoside, and of steviol monoglucosyl ester and phenyl beta-glucoside suggested the glucosidic and glucosyl ester linkages were hydrolyzed at a single active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号