首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The engineering analysis technique finite element analysis (FEA) is used here to investigate cranial stress and strain during biting and feeding in three phylogenetically disparate theropod taxa: Coelophysis bauri , Allosaurus fragilis and Tyrannosaurus rex . Stress patterns are generally similar in all taxa with the ventral region of the skull tensed whilst the dorsal aspect is compressed, although the skull is not purely behaving as a cantilever beam as there is no discernible neutral region of bending. Despite similarities, stress patterns are not wholly comparable: there are key differences in how certain regions of the skull contain stress, and it is possible to link such differences to cranial morphology. In particular, nasal morphology can be explained by the stress patterns revealed here. Tyrannosaurus models shear and compress mainly in the nasal region, in keeping with the indistinguishably fused and expanded morphology of the nasal bones. Conversely Allosaurus and Coelophysis models experience peak shear and compression in the fronto-parietal region (which is tightly interdigitated and thickened in the case of Allosaurus ) yet in contrast the nasal region is lightly stressed, corresponding to relatively gracile nasals and a frequently patent internasal suture evident in Allosaurus . Such differences represent alternate mechanical specializations between taxa that may be controlled by functional, phylogenetic or mechanical constraints. Creation of finite element models placed in a phylogenetic context permits the investigation of the role of such mechanical character complexes in the cranium of nonavian theropods and the lineage leading towards modern birds.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 309–316.  相似文献   

2.
3.
Evolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies. Here, using high-density morphometrics we capture cranial morphology for 172 anuran species, sampling every extant family. We quantify the pattern of evolutionary modularity in the frog skull and compare patterns in taxa with different life history modes. Evolutionary changes across the anuran cranium are highly modular, with a well-integrated “suspensorium” involved in feeding. This pattern is strikingly similar to that identified for caecilian and salamander crania, suggesting replication of patterns of evolutionary integration across Lissamphibia. Surprisingly, possession of a feeding larval stage has no notable influence on cranial integration across frogs. However, late-ossifying bones exhibit higher integration than early-ossifying bones. Finally, anuran cranial modules show diverse morphological disparities, supporting the hypothesis that modular variation allows mosaic evolution of the cranium, but we find no consistent relationship between degree of within-module integration and disparity.  相似文献   

4.
The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group.  相似文献   

5.
《Comptes Rendus Palevol》2019,18(6):599-617
Associated penguin remains found in Bartonian levels of the Submeseta Formation (Seymour Island, Antarctica), including cranium and mandible, both partial tarsometatarsi, and some other fragmentary bones, are analyzed here. This specimen preserves the first cranium reliably assigned to the giant form Anthropornis grandis, and constitutes the first opportunity to taxonomically assign a cranial material to any of the Antarctic penguin species. A discussion of the diet preferences and feeding mechanisms of A. grandis is supported here by three-dimensional paleoneurological and cranial-jaw muscular reconstructions. We propose that A. grandis was a penguin with a voluminous musculature strongly attached to the neck and skull, adapted to chase and hunt fish during diving.  相似文献   

6.
This study investigates the amphisbaenian species skull which includes cranium, lower jaw and hyoid apparatus. The medial dorsal bones comprise the premaxilla, nasal, frontal and parietal. The premaxilla carries a large medial tooth and two lateral ones. The nasals are paired bones and separated by longitudinal suture. Bones of circumorbital series are frontal, orbitosphenoid and maxilla. The occipital ring consists of basioccipital, supraoccipital and exooccipital. Supraoccipital and basioccipital are single bones while the exo-occipitals are paired. The bones of the palate comprise premaxilla, maxilla, septomaxilla, palatine, pterygoid, ectopterygoid, basisphenoid, parasphenoid, orbitosphenoid and laterosphenoid. Prevomer and pterygoid teeth are absent. Palatine represent by two separate bones. The temporal bones are clearly visible. The lower jaw consists of the dentary, articular, coronoid, supra-angular, angular and splenial. The hyoid apparatus is represented by a Y-shaped structure. The mandible is long and is suspended from the braincase via relatively short quadrate. There is an extensive contact between the long angular and the large triangular coronoid. Thus inter-mandibular joint is bridged completely by the angular and consequently, the lower jaws are relatively rigid and kinetic. The maxillae are suspended from the braincase largely by ligaments and muscles rather than through bony articulation. In conclusion, the skull shape affects feeding strategy in Diplometopon zarudnyi. The prey is ingested and transported via a rapid maxillary raking mechanism.  相似文献   

7.
Lambeosaurine hadrosaurids exhibited extreme modifications to the skull, where the premaxillae, nasals, and prefrontals were modified to form their iconic supracranial crests. This morphology contrasts with their sister group, Hadrosaurinae, which possessed the plesiomorphic arrangement of bones. Although studies have discussed differences between lambeosaurine and hadrosaurine skull morphology and ontogeny, there is little information detailing suture modifications through ontogeny and evolution. Suture morphology is of particular interest due to its correlation with the mechanical loading of the skull in extant vertebrates. We quantify and contrast the morphology of calvarial sutures in iguanodontians and ontogenetic series of Corythosaurus and Gryposaurus to test whether the evolution of lambeosaurine crests impacted the mechanical loading of the skull. We found that suture interdigitation (SI) increases through ontogeny in hadrosaurids, although this increase is more extreme in Corythosaurus than Gryposaurus, and overall suture complexity (i.e., overall shape) remained constant. Lambeosaurines also have higher SI than other iguanodontians, even in crestless juveniles, suggesting that increased sinuosity is unrelated to the structural support of the crest. Hadrosaurines and basal iguanodontians did not differ. Similarly, lambeosaurines have more complexly shaped sutures than hadrosaurines and basal iguanodontians, while the latter two groups do not differ. Taken together, these results suggest that lambeosaurine calvarial sutures are more interdigitated than other iguanodontians, and although suture sinuosity increased through ontogeny, the suture shape remained constant. These ontogenetic and evolutionary patterns suggest that increased suture complexity in lambeosaurines coincided with crest evolution, and corresponding modifications to their facial skeleton altered the distribution of stress while feeding.  相似文献   

8.
9.
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.  相似文献   

10.
Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible.  相似文献   

11.
The shape of the cranium varies widely among members of the order Carnivora, but the factors that drive the evolution of differences in shape remain unclear. Selection for increased bite force, bite speed or skull strength may all affect cranial morphology. We investigated the relationship between cranial form and function in the trophically diverse dog family, Canidae, using linear morphometrics and finite element (FE) analyses that simulated the internal and external forces that act on the skull during the act of prey capture and killing. In contrast to previous FE-based studies, we compared models using a newly developed method that removes the effects of size and highlights the relationship between shape and performance. Cranial shape varies among canids based on diet, and different selective forces presumably drove evolution of these phenotypes. The long, narrow jaws of small prey specialists appear to reflect selection for fast jaw closure at the expense of bite force. Generalists have intermediate jaw dimensions and produce moderate bite forces, but their crania are comparable in strength to those of small prey specialists. Canids that take large prey have short, broad jaws, produce the largest bite forces and possess very strong crania. Our FE simulations suggest that the remarkable strength of skulls of large prey specialists reflect the additional ability to resist extrinsic loads that may be encountered while struggling with large prey items.  相似文献   

12.
The skull bones must grow in a coordinated, three‐dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.  相似文献   

13.
The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel‐tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel‐tooth‐digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel‐tooth‐digging rodents differ in craniodental morphology. The study showed that the crania of chisel‐tooth‐digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel‐tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel‐tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species’ evolutionary history and functional morphology.  相似文献   

14.
The cranial osteology (including the hyolaryngeal apparatus) of Rhinophrynus dorsalis (Anura: Rhinophrynidae) is described from whole skeletons and serial cross sections. Some unique features of the extensively ossified skull include the enlarged and protracted olfactory region, for which the nasals form part of the septum nasi; the relatively short maxillaries and broad premaxillaries, and the immense quadratojugal; the extreme forward position of the quadrate; the lack of a firm articulation of the pterygoid and quadrate with the neurocranium and crista parotica; the quadrate lacking the distinct processes typical of other frogs; a single foramen for Nn. II–VII; a large, distinct operculum; and a bipartite hyale. Rhinophrynus shares other unusual cranial characteristics with the other pipoid frogs, Xenopus, Pipa, Hemipipa, and Hymenochirus. Among these features are the presence of a single frontoparietal in the adult, and the absence of parasphenoid alae, palatines, and mentomeckelian bones. Rhinophrynus differs from the pipids in the lack of a columella and a palatine process on the premaxilla, and in the possession of a quadratojugal, parahyoid bone, paired prevomers, olfactory eminence, massive quadrate that lacks distinguishable processes, a modified squamosal, and a bipartite hyale. Although the cranium of Rhinophrynus is distinctive, the evolutionary significance of its unusual features will remain obscure until comparable data are gathered from other closely related groups, the Discoglossoidea and the Pelobatoidea.  相似文献   

15.
Developing animals must resolve the conflicting demands of survival and growth, ensuring that they can function as infants or juveniles while developing toward their adult form. In the case of the mammalian skull, the cranium and mandible must maintain functional integrity to meet the feeding needs of a juvenile even as the relationship between parts must change to meet the demands imposed on adults. We examine growth and development of the cranium and mandible, using a unique ontogenetic series of known‐age coyotes (Canis latrans), analyzing ontogenetic changes in the shapes of each part, and the relationship between them, relative to key life‐history events. Both cranial and mandibular development conform to general mammalian patterns, but each also exhibits temporally and spatially localized maturational transformations, yielding a complex relationship between growth and development of each part as well as complex patterns of synchronous growth and asynchronous development between parts. One major difference between cranium and mandible is that the cranium changes dramatically in both size and shape over ontogeny, whereas the mandible undergoes only modest shape change. Cranium and mandible are synchronous in growth, reaching adult size at the same life‐history stage; growth and development are synchronous for the cranium but not for the mandible. This synchrony of growth between cranium and mandible, and asynchrony of mandibular development, is also characteristic of a highly specialized carnivore, the spotted hyena (Crocuta crocuta), but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. Morphological development does not predict life‐history events in these two carnivores, which is contrary to what has been reported for two rodent species. The changes seen in skull shape in successive life‐history stages suggest that adult functional demands cannot be satisfied by the morphology characterizing earlier life‐history stages. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Projection microradiography was used to determine the density and orientation of the force transmitting structures, i.e., trabeculae and bone lying between approximately parallel vascular canals, within the bones of cat skulls. The organisation in the skulls was confirmed statistically for a total of ten cats. The results of the observations showed that within specific areas of the skull a high degree of structural orientation and an increased density of osseous structures was present. The distribution of these characters corresponded in contiguous bones such that a continuum of structural organisation was established between the alveolar region and the site of attachment of the temporalis and masseter muscles and the glenoid region. The patterns of force transmission during jaw closure were determined when a resistance was placed initially between the canines and then the carnassials. An analysis was first carried out on dry skulls using colophonium resin to determine the direction of the force distribution. The nature and the approximate magnitude of the forces were ascertained by replacing the resin with strain gauges. The basic similarities in the strain patterns recorded from the dry skulls and those from the ten anaesthetised cats in which strain gauges had been intra-vitally implanted, substantiated the recordings made on the dry skulls. Combination of the results from the three sets of experiments defined the patterns of force distribution in the cat skull during the closure of the mandible against a resistance. The results showed that: (1) the combined action of the temporalis and masseter muscles tended to reduce the overall strain in the skull bones, and that the deformations produced by the action of the masseter were greater than that exerted by the temporalis muscles; (2) during biting, whether the resistance was placed between the canines or carnassials, compressive forces predominated in the facial bones; (3) small movements observed between facial bones indicated the presence of a flexible component within the skull, thus allowing large forces to be exerted during biting without overstressing the facial bones; (4) the glenoid fossa is part of a force bearing joint; (5) forces generated during biting were resisted within the skull by forces of an opposite nature generated within the system, the incompressible nature of bone and by the effect of the soft tissues; (6) the nature and the magnitude of the strain altered when a resistance was placed at the canines and then at the carnassials; however, the pattern of force distribution within the skull remained the same; (7) there was a direct correspondence between the detailed structural organisation of the bones and the patterns of force distribution. This conclusion would appear to apply in general to mammalian skulls. The study also emphasises the importance, neglected hitherto, of carrying out a variety of experiments to determine the patterns of force distribution in bones. The Trajectorial Theory of bone organisation is discussed and, on the basis of the results obtained, a modified theory is proposed. This states that: the structural continuum is common to the compact and cancellous bone and comprises bony bars which are aligned in the optimum direction for the transmission of force to a region in the bone or bones where it is effectively resisted.  相似文献   

17.
Gerald Mayr 《Ibis》2013,155(2):384-396
A new fossil stem group representative of Coliiformes (mousebirds) with a remarkable skull morphology is described from the late Oligocene of Germany. Oligocolius psittacocephalon sp. nov. for the first time preserves the skull of a post‐Eocene fossil mousebird. This exhibits a combination of skull features unknown from any other bird and converges on the skull of parrots in that the beak is separated from the cranium by a marked nasofrontal hinge and in that the interorbital part of the frontal bones is very wide. In addition, the mandible of the new species exhibits long retroarticular processes, which are unexpected because unlike in other coliiform birds exhibiting this feature, the short beak was probably not used for probing in substrate. It is hypothesized that the retroarticular processes of O. psittacocephalon instead served for a particular wide and forceful opening of the beak. Eight large fruit stones are situated in the area of the digestive tract of the new species. Preservation of most of these in a well‐delimited cluster in the region of the upper oesophagus suggests that, unlike in modern mousebirds, O. psittacocephalon had a crop. The new fossil shows that late Oligocene European stem group Coliiformes significantly differed from their extant relatives in morphology and probably also in feeding ecology.  相似文献   

18.
The tooth taxon Aublysodon mirandus was reinstated following the collection of nondenticulate tyrannosaurid premaxillary teeth from late Maastrichtian deposits in western North America. A small skull from the Hell Creek Formation of Montana (the 'Jordan theropod', LACM 28471), that was associated with a nondenticulate premaxillary tooth, was referred to Aublysodon and the diagnosis was revised to include cranial bones. However, the 'premaxillary' tooth of the specimen is actually a maxillary tooth. The small size of Aublysodon crowns, and evidence that some denticles develop late in growth in theropods, indicates that the nondenticulate condition represents immaturity. Therefore, Aublysodon is a nomen dubium. The Jordan theropod was recently designated as the type specimen of Stygivenator molnari . A tyrannosaurid from the Hell Creek Formation of Montana (LACM 23845) was first referred to Albertosaurus cf. A. lancensis and then later became the type specimen of Dinotyrannus megagracilis . On the basis of shared derived characters and a quantitative reconstruction of the growth series of Tyrannosaurus rex , the type specimens of S. molnari and D. megagracilis are juvenile and subadult specimens of T. rex , respectively. There is currently evidence for only one tyrannosaurid species in the late Maastrichtian of western North America: T. rex .  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 479–523.  相似文献   

19.
Researchers have debated whether the presence and frequency of wormian bones (sutural bones, supernumerary bones, and ossicles) are attributable to genetic factors, environmental factors, or both. This research examines the effects of many different kinds of cranial deformation on the incidence of wormian bones. A sample of 127 deformed and undeformed crania from New World archaeological sites was examined. An undeformed cranial sample (n=35) was compared to the following cranially deformed groups: 1) occipital, 2) lambdoid, 3) annular, 4) fronto-vertico-occipital, 5) parallelo-fronto-occipital, and 6) sagittal synostosis. Three levels of degree of cultural cranial deformation were qualitatively determined. Type and number of wormian bones along each major suture were recorded for each cranium. Group means were analyzed using Kruskal-Wallis one-way ANOVA statistical tests to test the null hypothesis that cranial deformation does not have an effect on wormian bone incidence. Results indicate that all forms of cranial deformation affect the frequency of some types of wormian bones. In particular, all cranially deformed groups exhibited significantly greater frequencies of lambdoid ossicles. Apical, parieto-mastoid, and occipito-mastoid wormian bones also appeared with greater frequency in some groups of culturally deformed crania. Further, varying degrees of cultural deformation all had more lambdoid wormian bones than the undeformed group. These results suggest that wormian bone development in posteriorly placed sutures may be affected more by environmental forces than are their anteriorly placed counterparts.  相似文献   

20.
吴新智 《人类学学报》2009,28(3):217-236
本文报道大荔颅骨的一系列测量数据, 并且将其与中国, 欧洲和非洲的中更新世人类的相应数据进行比较, 发现大荔颅骨的测量数据大多没有超出中国和欧洲/非洲中更新世人的变异范围, 有的与中国中更新世人接近, 有的与欧洲和/或非洲标本更加接近。本文将这些结果与大荔颅骨的与中国古人类共同具有的其他测量和观察特征进行综合考虑, 建议大荔人群属于中国古人类连续进化链中的一员, 并且表现出中国古人类与欧洲和非洲古人类之间基因交流的形态证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号