首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyphosphate kinase gene from Pseudomonas aeruginosa was overexpressed in its native host, resulting in the accumulation of 100 times the polyphosphate seen with control strains. Degradation of this polyphosphate was induced by carbon starvation conditions, resulting in phosphate release into the medium. The mechanism of polyphosphate degradation is not clearly understood, but it appears to be associated with glycogen degradation. Upon suspension of the cells in 1 mM uranyl nitrate, nearly all polyphosphate that had accumulated was degraded within 48 h, resulting in the removal of nearly 80% of the uranyl ion and >95% of lesser-concentrated solutions. Electron microscopy, energy-dispersive X-ray spectroscopy, and time-resolved laser-induced fluorescence spectroscopy (TRLFS) suggest that this removal was due to the precipitation of uranyl phosphate at the cell membrane. TRLFS also indicated that uranyl was initially sorbed to the cell as uranyl hydroxide and was then precipitated as uranyl phosphate as phosphate was released from the cell. Lethal doses of radiation did not halt phosphate secretion from polyphosphate-filled cells under carbon starvation conditions.  相似文献   

2.
The green alga Chlorella fusca accumulates polyphosphates under conditions of nitrogen starvation while deassembling the photosynthetic apparatus. The polyphosphate content of cells regreening after resupply with nitrate under different culture conditions was investigated by P-31 in-vivo NMR spectroscopy. Neither phosphate deficiency nor anaerobiosis during the first hours of regreening inhibited the recovery of the cells. Polyphosphates were degraded during regeening. Differences in the amount of polyphosphates of phosphate supplied and deficient cells occurred only after more then 8 h. After 16 h phosphate deficient cells had still 75% of the polyphosphate content of phosphate suppled cells. In cells kept under anaerobic conditions polyphosphate degradation was much higher than in oxygen supplied cells. After 8 h they contained less than 50% of the polyphosphate content of oxygen supplied cells. These data suggest that polyphosphates serve as obligatory phosphate source during regreening and may be used as an energy source.Non standard abbreviations EDTA Ethylene diamine tetraacetic acid - FID Free induction decay - MOPSO 3-(N-morpholine)-2-hydroxy-propanesulfonic acid - NMR Nuclear magnetic resonance - PP Polyphosphates - PP4 central phosphate groups of polyphosphates  相似文献   

3.
The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent K(m) of about 0.5 muM, but V(max) was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15 degrees C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity.  相似文献   

4.
The metabolic pathways of poly(3-hydroxybutyrate) (PHB) and polyphosphate in the microorganism Alcaligenes eutrophus H16 were studied by 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy and by conventional analytical techniques. A. eutrophus cells accumulated two storage polymers of PHB and polyphosphate in the presence of carbon and phosphate sources under aerobic conditions after exhaustion of nitrogen sources. The solid-state cross-polarization/magic-angle spinning 13C NMR spectroscopy was used to study the biosynthetic pathways of PHB and other cellular biomass components from 13C-labeled acetate. The solid-state 13C NMR analysis of lyophilized intact cells grown on [1-13C]acetate indicated that the carbonyl carbon of acetate was selectively incorporated both into the carbonyl and methine carbons of PHB and into the carbonyl carbons of proteins. The 31P NMR analysis of A. eutrophus cells in suspension showed that the synthesis of intracellular polyphosphate was closely related to the synthesis of PHB. The roles of PHB and polyphosphate in the cells were studied under conditions of carbon, phosphorus, and nitrogen source starvation. Under both aerobic and anaerobic conditions PHB was degraded, whereas little polyphosphate was degraded. The rate of PHB degradation under anaerobic conditions was faster than that under aerobic conditions. Under anaerobic conditions, acetate and 3-hydroxybutyrate were produced as the major extracellular metabolites. The implications of this observation are discussed in connection with the regulation of PHB and polyphosphate metabolism in A. eutrophus.  相似文献   

5.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4.  相似文献   

6.
Summary The effects of acetate and succinate were compared to the effect of phosphate starvation on the formation and degradation of polyphosphate in an Acinetobacter calcoaceticus isolate from a five-stage Bardenpho activated sludge plant and in mixed liquor from the same plant. Both acetate treatment and phosphate starvation result in significant phosphate release from the cells. Succinate treatment showed little difference from the control. A reduction in polyphosphate was observed simultaneously with the phosphate release. On resuspension of the treated samples in a complete medium, uptake of phosphate was observed. In the acetate-treated samples, this was significantly higher than in the phosphate starved samples. Polyphosphate formation was also significantly enhanced after treatment.  相似文献   

7.
Biosorption of actinides like uranium by fungal cells can play an important role in the mobilization or immobilization of these elements in nature. Sorption experiments of U(VI) with Schizophyllum commune at different initial uranium concentrations and varying metal speciation showed high uranium sorption capacities in the pH range of 4–7. A combination of high angle annular dark-field and scanning transmission electron microscopy analysis (HAADF-STEM) showed that living mycelium cells accumulate uranium at the cell wall and intracellular. For the first time the fluorescence properties of uranium accumulates were investigated by means of time-resolved laser-induced fluorescence spectroscopy (TRLFS) beside the determination of corresponding structural parameters using X-ray absorption fine structure spectroscopy (EXAFS). While the oxidation state of uranium remained unchanged during sorption, uranium speciation changed significantly. Extra and intracellular phosphate groups are mainly responsible for uranium binding. TRLFS spectra clearly show differences between the emission properties of dissolved species in the initial mineral medium and of uranium species on fungi. The latter were proved to be organic and inorganic uranyl phosphates formed depending on the uranyl initial concentration and in some cases on pH.  相似文献   

8.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-beta-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

9.
We observed that wild-type Escherichia coli utilized a linear polyphosphate with a chain length of 100 phosphate residues (poly-P100) as the sole source of phosphate in growth medium. A mutation in the gene phoA of alkaline phosphatase or phoB, the positive regulatory gene, prevented growth in this medium. Since no alkaline phosphatase activity was detected outside the wild-type cells, the periplasmic presence of the enzyme was necessary for the degradation of polyphosphate. A 90% reduction in the activity of periplasmic acid phosphatase with a pH optimum of 2.5 (delta appA mutants) did not affect polyphosphate utilization. Of the porins analyzed (OmpC, OmpF, and PhoE), the phoB-inducible porin PhoE was not essential since its absence did not prevent growth. To study how poly-P100 diffused into the cells, we used high-resolution 31P nuclear magnetic resonance (31P NMR) spectroscopy. The results suggest that poly-P100 entered the periplasm and remained in equilibrium between the periplasm and the medium. When present individually, porins PhoE and OmpF facilitated a higher permeability for poly-P100 than porin OmpC did. The degradation of polyphosphate by intact cells of E. coli observed by 31P NMR showed a time-dependent increase in cellular phosphate and a decrease in polyphosphate concentration.  相似文献   

10.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-β-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

11.
The fission yeast Schizosaccharomyces pombe was found to accumulate large amounts of polyphosphate, particularly when grown on arginine as the nitrogen source. Upon transfer to a medium without phosphate, polyphosphate was degraded and served as an endogenous phosphate reserve. When phosphate was added again after a prolonged period of phosphate starvation, fission yeast cells synthesized more polyphosphate than they had contained before starvation, a phenomenon known as over-compensation. Strains carrying mutated structural genes for three different phosphatases, pho1, pho2 or pho3, degraded polyphosphate at the same rate as the wild-type strain during phosphate starvation and showed the same type of over-compensation when phosphate was added again.  相似文献   

12.
The green alga Chlorella vulgaris has the ability to bind high amounts of uranium(VI) in the pH range from 3 to 6. At pH 3 up to 40% of the uranium are bound by the algal cells. The uranium removal is almost complete at pH 5 and 6 under the given experimental conditions. Scanning electron microscopy and laser-induced fluorescence spectroscopy were used to characterize uranyl species formed in the selected pH range. The micrographs show a regular distribution of U(VI) on the cell surface. Fluorescence spectroscopic investigations of formed algal uranyl complexes indicate that the binding of U(VI) to carboxyl groups plays a dominating role at pH 3, whereas a minor impact of organic phosphate compounds on the U(VI) sorption cannot be excluded. In contrast, at pH 5 and 6 the phosphate groups are mainly responsible for the removal and binding of U(VI) by formation of organic and/or inorganic uranyl phosphates.  相似文献   

13.
SUMMARY

Microcystis aeruginosa toxic strain UV-006 stored a fixed amount of polyphosphate in spherical granules located in the centroplasm. Twenty four hours of phosphate starvation induced use of stored polyphosphate, manifested by reduction in granule numbers. Reintroduction of 2, 4 or 8 mg l?1 K2HPO4 resulted in redeposition of polyphosphate in a critical number of centroplasmic polyphosphate granules. Growth rate was unaffected by phosphate concentrations, although the final cell yield was slightly lower at 8 mg l ?1

Continued starvation decreased photosynthetic rate and growth ceased. Cells appeared senescent. Cyanophycin and polyglucoside reserves apparently increased in these cells, whilst thylakoids were reduced in number and reorientated away from. the cell wall and polyhedral bodies were lost. After the initial decrease, centroplasmic polyphosphate bodies increased to about half of the maximum numbers stored in cells grown in the presence of phosphate, suggesting that translocation of phosphorus from other areas in the phosphate-starved cell occurred.

Two further polyphosphate deposition areas were observed. DNA fibrils may have represented nucleation sites for developing polyphosphate granules. Intrathylakoidal deposits were rare.  相似文献   

14.
Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was used to study the properties of uranium complexes (emission spectra and fluorescence lifetimes) formed by the cells of the three recently described eco-types of Acidithiobacillus ferrooxidans. The results demonstrated that these complexes have different lifetimes which increase in the same order as the capability of the strains to accumulate uranium. The complexes built by the cells of the eco-type II were the strongest, whereas, those of the eco-types I and III were significantly weaker. The emission spectra of all A. ferrooxidans complexes were almost identical to those of the uranyl organic phosphate compounds. The latter finding was confirmed by infrared spectroscopic analysis.  相似文献   

15.
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.  相似文献   

16.
A previously developed dynamic model of the Escherichia coli Pho regulon was extended to investigate the effect of polyphosphate synthesis and degradation on this control system. Differential equations for ATP and polyphosphate were formulated, and the model was applied to the growth of cells containing the ppk and ppx genes under control of separate, inducible promoters. In agreement with recent experimental observations, the degradation of polyphosphate by PPX during a period of phosphate limitation could repress the phosphate-starvation response. This is attributed to the release of phosphate from the cell into the periplasm, where it can be detected by the external phosphate sensor. A segregated model was then developed to account for differences in K(I), the dissociation constant for the repression complex, among cells of the population. Since K(I) is the key parameter in determining whether the Pho response is induced or repressed at a particular surface phosphate concentration, this permitted the induction of some cells while others remained repressed. The induction profiles resulting from the population-averaged values more closely matched experimental results than did those with the nonsegregated model.  相似文献   

17.
The effects of starvation and subsequent addition of phosphate-containing medium on the phosphate metabolic intermediates were studied by 31P-NMR spectroscopy of perchloric acid extracts and intact cells of Heterosigma akashiwo (Hada) hada. When orthophosphate in the medium was completely depleted the medium was enriched with orthophosphate (4.5 μM). In the phosphate starved condition, the P cell quota was 76 fmol-cell−1 and the major components of phosphate intermediates were phosphodiester, sugar phosphate and orthophosphate (Pi) After addition of Pi' rapid uptake of Pi was observed and the P cell quota increased to 108 fmol. cell−1 in 2 h, 134 fmol. cell−1 in 5 h and 222 fmol. cell−1 in 1 day after addition of phosphate. The 31P-NMR spectrum indicated that a major portion of P was stored as polyphosphate, in which the average chain length of polyphosphate increased from 10 to 20 phosphate residues in one day after addition of Pi-  相似文献   

18.
Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.  相似文献   

19.
3T3 cells were cultured in media with different phosphate concentrations and the effects on DNA synthesis were examined. Even a modest phosphate depletion markedly inhibited DNA synthesis and cell multiplication in proliferating cultures. Furthermore, the decrease in the proportion of DNA-synthesizing cells observed after phosphate starvation followed the same time-course as the decrease seen after serum starvation. Cells starved to quiescence in a medium with a 100-fold decrease in phosphate concentration remained viable but non-proliferating for up to 3 weeks, i.e. they had entered a state of quiescence comparable with that seen after serum starvation. Addition of phosphate to phosphate-depleted cultures restored DNA synthesis within 24h. Furthermore, the kinetics of [3H]thymidine labelling after phosphate addition were nearly identical with the labelling kinetics following addition of serum to serum-depleted cultures. In contrast, phosphate deprivation had no inhibitory effects on DNA synthesis in simian-virus-40-transformed 3T3 cells. Furthermore, the inhibitory effects on DNA synthesis in such cells caused by a complete removal of serum could not be further enhanced by decreasing the phosphate concentration in the culture medium.  相似文献   

20.
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号