首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Molecular medicine today》1998,4(11):478-484
Heat shock proteins (Hsps), ubiquitous in nature, act as chaperones for peptides and other proteins. They have been implicated in loading immunogenic peptides onto major histocompatibility complex molecules for presentation to T cells. When isolated from tumor cells, Hsps are complexed with a wide array of peptides, some of which serve as tumor-specific antigens. Animal studies have demonstrated that heat shock protein–peptide complexes (HSPPCs) from tumor cells can act as vaccines to prevent or treat tumors. Potent and specific tumor antigens have long been the holy grail in cancer immunotherapy; HSPPCs from tumor cells could become a safe and reliable source of tumor-specific antigens for clinical application.  相似文献   

2.
Foreign and self endogenous proteins can be processed and presented as peptides bound to class I and II MHC to CD8 or CD4-positive T cells. In the case of mutant tumor suppressor proteins, proteosomal processing of the mutant protein could occur either in the tumor cell or in an antigen-presenting cell to generate a variety of peptides that can be transported into the endoplasmic reticulum and loaded on the MHC. These peptides may induce tumor suppressor specific T cells in the presence of sufficient T help and costimulation. In human cancer, p53 is frequently found to be both somatically mutant and overexpressed. We and others are currently investigating the potential of peptide-induced cellular immunotherapy to induce cytotoxic T cells to peptides containing point mutant p53, or other oncogene products, thus potentially inducing tumor-specific cellular immunity. There are many potential prerequisites for successful immunotherapeutic targeting of intracellular antigens such as p53, including: (1) the protein must have a sufficient expression level; (2) it should be a candidate for proteolytic degradation and transport into the ER; (3) the tumor-specific epitope must have adequate affinity to the corresponding MHC restriction element; (4) the MHC complex must be expressed at sufficient levels on the cell surface to make the tumor-specific epitope accessible to T cells; and (5) the method of therapeutic immunization must effectively induce oncopeptide-specific cytotoxic T lymphocytes.  相似文献   

3.
Heat shock proteins (Hsps) are able to induce protective immune responses against pathogens and tumors after injection into immunocompetent hosts. The activation of components of the adaptive immune system, including cytotoxic T lymphocytes specific for pathogen- or tumor-derived peptides, is crucial for the establishment of immunoprotection. Hsps acquire these peptides during intracellular protein degradation and when released during necrotic cell death, facilitate their uptake and Minor Histocompatibility Complex (MHC)-restricted representation by professional antigen-presenting cells (APCs). In addition, the interaction of Hsps with APCs, including the Endoplasmatic Reticulum (ER)-resident chaperone glycoprotein 96 (Gp96), induces the maturation of these cells by Toll-like receptor (TLR)-mediated signaling events. We now provide evidence that in contrast to lipopolysaccharides (LPS)-mediated dendritic cell (DC) maturation, the interaction of Gp96 with DCs leads to the preferential expansion of antigen-specific CD8-positive T cells in vitro and in vivo. This CD8 preference induced by mouse and human DCs did not correlate with enhanced levels of interleukin-12 secretion. Thus, despite the fact that both LPS and Gp96 activate DCs in a TLR4-dependent manner, the experiments of this study clearly demonstrate qualitative differences in the outcome of this maturation process, which preferentially favors the expansion of CD8-positive T cells.  相似文献   

4.
Gastric cancer is a significant cause of morbidity and mortality worldwide. Surgical resection remains the primary curative treatment for gastric adenocarcinoma, but the poor (15–35%) survival rate at 5 years has prompted many studies for new therapeutic strategies, such as specific immunotherapy. The aim of this study was to analyze the functional properties of the T cell response to different antigen peptides related to gastric cancer in patients with gastric adenocarcinoma. To this purpose, we have cloned and characterized tumor-infiltrating T cells (TILs) isolated from the neoplastic gastric tissue samples. A T cell response specific to different peptides of gastric cancer antigens tested was documented in 17 out of 20 patients, selected for their HLA-A02 and/or -A24 alleles. Most of the cancer peptide-specific TILs expressed a Th1/Tc1 profile and cytotoxic activity against target cells. The effector functions of cancer peptide-specific T cells obtained from the peripheral blood of the same patients were also studied. The majority of peripheral blood peptide-specific T cells also expressed the Th1/Tc1 functional profile. In conclusion, in most of the patients with gastric adenocarcinoma, a specific type-1 T cell response to gastric cancer antigens was detectable and would have the potential of hamper tumor cell growth. However, in order to get tumor cell killing in vivo, the activity and the number of cancer peptide-specific Th1/Tc1 cells probably need to be enhanced by vaccination with the appropriate cancer antigenic peptides or by injection of the autologus tumor peptide-specific T cells expanded in vitro.  相似文献   

5.
Heat shock proteins (Hsps) and molecular chaperones isolated from tumors or virally infected cells elicit an efficient CD8+ T cell response against bound antigenic peptides. This immune response is mediated by presentation of the peptides on MHC class I complexes of antigen-presenting cells (APCs), but the cellular mechanism of this presentation process is not yet understood. Here we provide evidence for the existence of a proteinaceous receptor on the surface of APCs that is specific for mammalian Hsp70. Using a flow cytometry-based assay, saturable binding of Hsp70 to the cell surface of macrophages and peripheral blood monocytes, but not of lymphocytes, can be demonstrated. The affinity of the receptor is in the sub-micromolar range (Kd < 100 nM). Only mammalian Hsc70/Hsp70, but not bacterial Hsp70, is bound with high affinity. Subsequent to binding, Hsp70 is taken up by endocytosis, resulting in an intracellular localization. Our results suggest that receptor-mediated endocytosis forms the basis for the demonstrated efficacy of Hsp70-peptide complexes as anti-tumor vaccines.  相似文献   

6.
Fast dissociation rate of peptide-MHC complexes from TCR has commonly been accepted to cause T cell anergy. In this study, we present evidence that peptides that form transient complexes with HLA-DR1 induce anergy in T cell clones in vitro and specific memory T cells in vivo. We demonstrate that similar to the low densities of long-lived agonist peptide-MHC, short-lived peptide-MHC ligands induce anergy by engagement of approximately 1000 TCR and activation of a similar pattern of intracellular signaling events. These data strongly suggest that short-lived peptides induce anergy by presentation of low densities of peptide-MHC complexes. Moreover, they suggest that the traditional antagonist peptides might also trigger anergy by a similar molecular mechanism. The use of short-lived peptides to induce T cells anergy is a potential strategy for the prevention or treatment of autoimmune diseases.  相似文献   

7.
The mammalian immune system has evolved to display fragments of protein antigens derived from microbial pathogens to immune effector cells. These fragments are typically peptides liberated from the intact antigens through distinct proteolytic mechanisms that are subsequently transported to the cell surface bound to chaperone-like receptors known as major histocompatibility complex (MHC) molecules. These complexes are then scrutinized by effector T cells that express clonally distributed T cell receptors with specificity for specific MHC-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this peptide landscape of cells act to alert immune effector cells to changes in the intracellular environment that may be associated with infection, malignant transformation, or other abnormal cellular processes, resulting in a cascade of events that result in their elimination. Because peptides play such a crucial role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Here we review recent advances in the studies of immune responses that have utilized mass spectrometry and associated technologies, with specific examples from collaboration between our laboratories.  相似文献   

8.
J Lamvik  H Hella  N B Liabakk  ? Halaas 《Cytometry》2001,45(3):187-193
BACKGROUND: In studies on surface membrane antigen expression using immunofluorescence techniques, it is commonly observed that direct staining gives weaker signals than the signals following indirect staining with fluorochrome-conjugated secondary antibodies. This is most marked when cells have also been permeabilized in order to stain intracellular protein. The commonly accepted explanation for this observation is that fluorochrome-conjugated secondary antibodies bind to a higher number of binding sites on the primary antibody, as compared to the binding of conjugated primary antibodies to the membrane antigens. Another hypothesis might be that the antibody/antibody complexes formed on the membranes when using the indirect technique may have an augmented ability to bind the membrane epitopes. The present study was performed in order to check this hypothesis. MATERIALS AND METHODS: Peripheral blood mononuclear cells were stained with fluorochrome-conjugated anti-CD antibodies directly without or with a second-step application of nonconjugated goat anti-mouse IgG antibodies, followed by different fixation and permeabilization methods. The cells were analyzed by flow cytometry. RESULTS: A second-step application of nonconjugated goat anti-mouse IgG antibodies following direct staining with fluorochrome-conjugated anti-CD antibodies gave a significant increase in membrane antigen expression on permeabilized cells as compared to direct staining alone. The secondary antibody must be bivalent, since whole IgG or F(ab')(2) fragments of the goat anti-mouse antibodies showed effects, while Fab fragments did not. CONCLUSIONS: Nonlabeled secondary antibodies are able to influence the binding of primary, specific antibodies to cell membrane antigens on cells treated with permeabilizing agents necessary for staining intracellular proteins. The improved membrane antigen expression seems to be due to the formation of a network of primary and secondary antibodies on the cell surface, with increased ability for maintaining binding to CD antigens.  相似文献   

9.
MHC class II molecules are thought to present peptides derived from extracellular proteins to CD4+ T cells, which are important mediators of adaptive immunity to infections. In contrast, autophagy delivers constitutively cytosolic material for lysosomal degradation and has so far been recognized as an efficient mechanism of innate immunity against bacteria and viruses. Recent studies, however, link these two pathways and suggest that intracellular cytosolic and nuclear antigens are processed for MHC class II presentation after autophagy.  相似文献   

10.
For T cells to recognize foreign antigens, the latter must be processed into peptides and associated to major histocompatibility complex (MHC) class II molecules by antigen-presenting cells (APC). APCs frequently operate under stress conditions induced by tissue damage, antigens, or inflammatory reactions. We analyze the effects of oxidative stress on intracellular processing using APC B cell lines. Before being tested for APC function, B cells (IIA1.6) were exposed for 2 hours to hydrogen peroxide (H2O2), a treatment that impairs their capacity to stimulate specific T cell clones. Because paraformaldehyde-fixed H2O2-treated B cells can still present extracellular peptides to T cell clones, the intracellular events of processing were investigated. Purified lysosomes from H2O2-treated B cells show increased proteolytic activity and increased generation of antigenic peptides. In addition, H2O2 treatment targets antigens to compartments that express low levels of MHC II and proteins (H-2M, H-2O) required for peptide loading onto this molecule. Finally, we suggest that impairment of antigen processing by oxidative stress reduces the induction of a T cell's response because H2O2 decreases the activation of naive T lymphocytes by dendritic cells. Together, these data indicate that oxidative stress inhibits the capacity of APCs to process antigens and to initiate a primary T cell response. The role of such modifications on the outcome of the specific immune response is discussed.  相似文献   

11.
Prostatic acid phosphatase (PAP) has been investigated as the target of several antigen-specific anti-prostate tumor vaccines. The goal of antigen-specific active immunotherapies targeting PAP would ideally be to elicit PAP-specific CD8+ effector T cells. The identification of PAP-specific CD8+ T-cell epitopes should provide a means of monitoring the immunological efficacy of vaccines targeting PAP, and these epitopes might themselves be developed as vaccine antigens. In the current report, we hypothesized that PAP-specific epitopes might be identified by direct identification of pre-existing CD8+ T cells specific for HLA-A2-restricted peptides derived from PAP in the blood of HLA-A2-expressing individuals. 11 nonamer peptides derived from the amino acid sequence of PAP were used as stimulator antigens in functional ELISPOT assays with peripheral blood mononuclear cells from 20 HLA-A2+ patients with prostate cancer or ten healthy blood donors. Peptide-specific T cells were frequently identified in both groups for three of the peptides, p18–26, p112–120, and p135–143. CD8+ T-cell clones specific for three peptides, p18–26, p112–120, and p299–307, confirmed that these are HLA-A2-restricted T-cell epitopes. Moreover, HLA-A2 transgenic mice immunized with a DNA vaccine encoding PAP developed epitope-specific responses for one or more of these three peptide epitopes. We propose that this method to first identify epitopes for which there are pre-existing epitope-specific T cells could be used to prioritize MHC class I-specific epitopes for other antigens. In addition, we propose that the epitopes identified here could be used to monitor immune responses in HLA-A2+ patients receiving vaccines targeting PAP to identify potentially therapeutic immune responses.  相似文献   

12.
A direct immunofluorescent antibody test with an anti-Trypanosoma cruzi F(ab')2 conjugate was used to demonstrate antigens of T. cruzi on the membrane surface of intact live or fixed macrophages and L929 mouse fibroblasts infected with the organism. Antigens were demonstrated in 5 to 50% of infected cells, and their presence was not directly related to the number of intracellular organisms. Cells with as few as four intracellular amastigotes had demonstrable surface antigens, whereas some cells with as many as twelve or more organisms did not. Capping of antigen-antibody complexes was noted to begin a few minutes after the addition of the anti-T cruzi F(ab')2 conjugate; by 30 min, most of the parasitized cells had eliminated the complexes, and no surface antigen of parasitic nature could be demonstrated. Although capping may have caused a negative result in a previously positive cell, other mechanisms may be involved, because antigens were not demonstrated in some heavily parasitized cells examined immediately after completion of the test. Treatment of the infected cells with trypsin or chymotrypsin resulted in the absence of demonstrable parasite antigens on the cell membrane surface. However, the antigens were again demonstrated 12 hr after the enzymes were removed. The reappearance of parasite antigens on the surface of infected cells was prevented by treatment of the monolayers with puromycin or tunicamycin. A T cell-enriched population of spleen lymphocytes from mice chronically infected with T. cruzi recognized the membrane-bound antigens and proceeded to destroy the host cell and the intracellular organisms. In this process, noninfected cells were also destroyed, possibly because they were coated with antigens released from intact infected cells or from infected cells that had been lysed by the action of the sensitized lymphocytes or their products.  相似文献   

13.
The thymus and central tolerance   总被引:3,自引:0,他引:3  
T-cell differentiation in the thymus generates a peripheral repertoire of mature T cells that mounts strong responses to foreign antigens but is largely unresponsive to self-antigens. This state of specific immunological tolerance to self-components involves both central and peripheral mechanisms. Here we review the process whereby many T cells with potential reactivity for self-antigens are eliminated in the thymus during early T-cell differentiation. This process of central tolerance (negative selection) reflects apoptosis and is a consequence of immature T cells receiving strong intracellular signalling through T-cell receptor (TCR) recognition of peptides bound to major histocompatibility complex (MHC) molecules. Central tolerance occurs mainly in the medullary region of the thymus and depends upon contact with peptide-MHC complexes expressed on bone-marrow-derived antigen-presenting cells (APCs); whether tolerance also occurs in the cortex is still controversial. Tolerance induction requires a combination of TCR ligation and co-stimulatory signals. Co-stimulation reflects interaction between complementary molecules on T cells and APCs and probably involves multiple molecules acting in consort, which may account for why deletion of individual molecules with known or potential co-stimulatory function has little or no effect on central tolerance. The range of self-antigens that induce central tolerance is considerable and, via low-level expression in the thymus, may also include tissue-specific antigens; central tolerance to these latter antigens, however, is likely to be limited to high-affinity T cells, leaving low-affinity cells to escape. Tolerance to alloantigens and the possibility of using central tolerance to promote acceptance of allografts are discussed.  相似文献   

14.
The completion of the human genome sequence and the development of new techniques, which allow the visualisation of comprehensive gene expression patterns, has led to the identification of a large number of gene products differentially expressed in tumours and corresponding normal tissues. The task at hand is the sorting of these genes into correlative and causative ones. Correlative genes are merely changed as a consequence of transformation and have no decisive effects upon transformation. In contrast, causative genes play a direct role in the process of cellular transformation and the maintenance of the transformed state, which can be exploited for therapeutic purposes. Oncogenes and tumour suppressor genes are prime targets for the development of new inhibitors and gene therapeutic strategies. However, many target oncogene products do not exhibit enzymatic activity that can be inhibited by conventional small molecular weight compounds. They exert their functions through regulated protein-protein or protein-DNA interactions and might require other compounds for efficient interference with such functions. Peptides are emerging as a novel class of drugs for cancer therapy, which could fulfil these tasks. Peptide therapy aims at the specific inhibition of inappropriately activated oncogenes. This review will focus on the selection procedures, which can be employed to identify useful peptides for the treatment of cancer. Before peptide-based therapeutics can become useful, it will be necessary to increase their stability by modifications or the use of scaffolds. Additionally, various delivery methods including liposomes and particularly the use of protein transduction domains (PTDs) have to be explored. These strategies will yield highly specific and more effective peptides and improve the potential of peptide-based anti-cancer therapeutics.  相似文献   

15.
16.
Immunogenic HER-2/neu peptides as tumor vaccines   总被引:6,自引:0,他引:6  
During the last decade, a large number of tumor-associated antigens (TAA) have been identified, which can be recognized by T cells. This has led to renewed interest in the use of active immunization as a modality for the treatment of cancer. HER-2/neu is a 185-KDa receptor-like glycoprotein that is overexpressed by a variety of tumors including breast, ovarian, lung, prostate and colorectal carcinomata. Several immunogenic HER-2/neu peptides recognized by cytotoxic T lymphocytes (CTL) or helper T lymphocytes (TH) have been identified thus far. Patients with HER-2/neu over-expressing cancers exhibit increased frequencies of peripheral blood T cells recognizing immunogenic HER-2/neu peptides. Various protocols for generating T cell-mediated immune responses specific for HER-2/neu peptides have been examined in pre-clinical models or in clinical trials. Vaccination studies in animals utilizing HER-2/neu peptides have been successful in eliminating tumor growth. In humans, however, although immunological responses have been detected against the peptides used for vaccination, no clinical responses have been described. Because HER-2/neu is a self-antigen, functional immune responses against it may be limited through tolerance mechanisms. Therefore, it would be interesting to determine whether abrogation of tolerance to HER-2/neu using appropriate adjuvants and/or peptide analogs may lead to the development of immune responses to HER-2/neu epitopes that can be of relevance to cancer immunotherapy. Vaccine preparations containing mixtures of HER-2/neu peptides and peptide from other tumor-related antigens might also enhance efficacy of therapeutic vaccination. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004  相似文献   

17.
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of antigen-presenting cells is an effective extracellular representation of the intracellular antigen content. The intracellular proteasome-dependent proteolytic machinery is required for generating MHC class I-presented peptides. These peptides appear to be derived mainly from newly synthesized defective ribosomal products, ensuring a rapid cytotoxic T lymphocyte-mediated immune response against infectious pathogens. Here we discuss the generation of MHC class I antigens on the basis of the currently understood molecular, biochemical and cellular mechanisms.  相似文献   

18.
Purification of recombinant and endogenous HSP70s   总被引:10,自引:0,他引:10  
Heat shock proteins (HSPs) are powerful immunogens against the antigenic peptides they chaperone. The antigenic peptides are MHC I-binding peptides and their elongated precursors derived from tumor antigens, viral antigens, minor histocompatibility antigens, or model antigens. HSP-peptide complexes can immunize against tumors and pathogen-infected cells. Remarkably, HSPs do not immunize after elution of the peptides they chaperone, demonstrating that HSPs are not immunogenic per se, whereas HSP-peptide complexes are. Additionally, HSPs activate professional antigen presenting cells (APC) through specific receptor(s) to stimulate secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules and activation of dendritic cells. The mechanistic exploration of the role of the HSPs on the innate and adaptive component of the immune system requires their isolation in large quantity. On one hand, isolation of naturally formed HSP-peptide complexes is key to study their specific immunogenicity. On the other hand, purification of HSPs free of endotoxin contamination is an absolute requirement for the analysis of their ability to activate APC in vitro. This chapter describes a convenient and fast method of purification of endogenous and recombinant HSP of 70 kDa (HSP70) that addresses these two considerations.  相似文献   

19.
The release of proteins from tumors triggers an immune response in cancer patients. These tumor antigens arise from several mechanisms including tumor-specific alterations in protein expression, mutation, folding, degradation, or intracellular localization. Responses to most tumor antigens are rarely observed in healthy individuals, making the response itself a biomarker that betrays the presence of underlying cancer. Antibody immune responses show promise as clinical biomarkers because antibodies have long half-lives in serum, are easy to measure, and are stable in blood samples. However, our understanding of the specificity and the impact of the immune response in early stages of cancer is limited. The immune response to cancer, whether endogenous or driven by vaccines, involves highly specific T lymphocytes (which target tumor-derived peptides bound to self-MHC proteins) and B lymphocytes (which generate antibodies to tumor-derived proteins). T cell target antigens have been identified either by expression cloning from tumor cDNA libraries, or by prediction based on patterns of antigen expression ("reverse immunology"). B cell targets have been similarly identified using the antibodies in patient sera to screen cDNA libraries derived from tumor cell lines. This review focuses on the application of recent advances in proteomics for the identification of tumor antigens. These advances are opening the door for targeted vaccine development, and for using immune response signatures as biomarkers for cancer diagnosis and monitoring.  相似文献   

20.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号