首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biomechanics and Modeling in Mechanobiology - Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix (ECM). Healing is...  相似文献   

2.
Repair of amoeba nuclear envelopes that have been damaged microsurgically involves the association of pieces of endoplasmic reticulum with the damaged nuclear membranes. The capacity of endoplasmic reticulum of one type of cell to interact with the nuclear membranes of a different type was tested by placing the damaged nucleus of one kind of amoeba into the cytoplasm of another. Damaged nuclei from Amoeba proteus underwent repair in the cytoplasm of A. discoides or A. indica, as was the case in the reciprocal combinations of these nuclei and cytoplasms. In samples prepared 30 min after operation, heterologous endoplasmic reticulum was associated with holes in the nuclear membranes and appeared to fuse with the nuclear membranes at the margins of the holes. By 5 h after operation, almost all of the cells survived, and the nuclear membranes were largely intact, indicating that repair had occurred. In contrast, when an Amoeba dubia nucleus was damaged and placed in A. proteus cytoplasm there was no evidence of repair and many cells died within a few hours. The results indicate that endoplasmic reticulum and nuclear membranes from different types of cells can interact during repair of damaged nuclear membranes. There appears to be a specificity to this interaction, however, since in a combination of relatively dissimilar cells no association of endoplasmic reticulum with damaged nuclear envelopes was observed and repair did not occur.  相似文献   

3.
A 22-year-old male subject, with high-voltage electrical burns to one wrist, utilized differential relaxation and visual biofeedback to increase skin temperature in the damaged hand. Through 14 thermal biofeedback and passive relaxation sessions, the subject was able to produce temperature increases in his damaged hand of up to 21 degrees F, which considerably diminished the pain. Healing, feeling, and movement control seemed to progress with extreme rapidity, suggesting that axoplasmic transport was greatly enhanced.  相似文献   

4.
目的:探讨斜视矫正手术对双眼视觉功能的影响。方法:将收集的85例斜视患者根据斜视类型分组,共同性外斜视组51例,占60.00%;共同性内斜视组16例,占18.82%。麻痹性斜视组13例,占15.30%,特殊类型斜视组5例,占5.88%。同视机检查并记录患者术前及术后双眼视功能情况。结果:外斜视手术方式多选用单眼外直肌后徙+内直肌缩短术,内斜视手术主要选用双眼内直肌后徙术,上斜肌麻痹多行患眼下斜肌适量后徙或转位术,麻痹性内斜和外斜手术方式为患眼水平肌后徙联合缩短术,外斜V征手术方式为双眼外直肌后徙联合上移半个肌腱,伴有斜肌亢进者需同时行斜肌减弱术,固定性内斜1例手术方式为患眼内直肌断键+直肌联结术。85例患者术后正位73例(85.89%),双眼视觉功能手术前后比较有显著性差异(P0.05),术后较术前可见明显改善。结论:斜视矫正手术可促进双眼视觉功能的恢复,尤其是对于学龄前儿童效果更明显。  相似文献   

5.
A 22-year-old male subject, with high-voltage electrical burns to one wrist, utilized differential relaxation and visual biofeedback to increase skin temperature in the damaged hand. Through 14 thermal biofeedback and passive relaxation sessions, the subject was able to produce temperature increases in his damaged hand of up to 21°F, which considerably diminished the pain. Healing, feeling, and movement control seemed to progress with extreme rapidity, suggesting that axoplasmic transport was greatly enhanced.The authors gratefully acknowledge the assistance of Dr. Ranjit Singh, M.B., FRCP (C).  相似文献   

6.
Healing processes of the myocardium after an injury during the intrauterine period were studied. After the mechanical trauma of the heart the rabbit fetus is kept in the maternal organism and is born in due course. It was found that the healing of the injured part of the cardiac muscle occurred shortly and was due to the high proliferative activity of the cells. Morphological structure of the tissue appearing at the site of injury is very similar to that of the muscle tissue. However, further studies are necessary for final decision.  相似文献   

7.
Summary The sternocostalis muscle of the rat was examined at one to five days after partial denervation and levels of terminal sprouting were assessed.The removal of one intercostal nerve caused localised degeneration which did not extend more than a few muscle fibres deep into the field of distribution of the adjacent nerve. Terminal sprouting was clearly seen at 24 h after operation and did not appear to develop further up to five days.There was no difference in the sprouting responses to section of either intercostal nerve 2, 4 or 5. There was, however, a decrease in the response with increasing distance from the cut nerve. No sprouting response was observed in the contralateral muscle.Comparison of sprouting levels of B and C type end plates revealed a greater percentage of C type end plates with sprouts. However, the response of B type end plates, considered in relation to the levels of spontaneous sprouting, was greater than that of C type end plates.  相似文献   

8.
The present study analyzes the effect of selective deafferentation on the reperfusion injury of the skeletal muscle when nociceptive sensory fibers of the left sciatic nerve are selectively damaged by capsaicin pretreatment in a rat model following tourniquet ischemia (ISC) applied for 30 min, 1 h, and 2 h on the left hind limb. The isometric tetanic contractile force of the extensor digitorum longus (EDL) muscle was measured after 1 h, and 1, 3, or 7 days of reperfusion. Contractile force of the damaged muscle was compared to the intact contralateral muscle. In another group, ISC was used without capsaicin pre-treatment. After 30 min of ISC, there was no difference between deafferented and non-pretreated groups. Following 1 h ISC, with the exception of 1 h reperfusion, the non-pretreated group produced stronger contractions than the deafferented group. After 2 h ISC, the contractile force of the deafferented muscle was significantly stronger compared to the non-deafferented muscle force at all reperfusion times. In conclusions, it was found that the absence of peptidergic sensory fibers after long-lasting (2 h) ischemia is beneficial in reperfusion injury, whereas the absence of vasodilator peptides has unfavorable effects if tissue damage is milder (after 1 h ischemia).  相似文献   

9.
Morphologic changes in Doxorubicin (DXR)-induced cardiomyopathy are characterized by marked dilatation of the sarcoplasmic reticulum (SR). DXR was administered to New Zealand White rabbits for 5 or 8 weeks and the three-dimensional structure of the sarcotubular system in cardiac muscle cells from each rabbit was examined under a field-emission type scanning electron microscope (SEM) after removal of cytoplasmic matrices by the osmium-DMSO-osmium procedure. Five weeks after the initial injection of DXR, partial dilatation of the SR and damaged mitochondria with lysis of cristae were observed three-dimensionally. After 8 weeks, the three-dimensional structure of the SR showed extensive spherical ballooning which could be seen clearly in bold relief. Thus, we could directly visualize structural alterations of the sarcotubular system in DXR-induced cardiomyopathy using the SEM.  相似文献   

10.
Excessive inflammatory response may delay the regeneration and damage the normal muscle fibers upon myoinjury. It would be important to be able to attenuate the inflammatory response and decrease inflammatory cells infiltration in order to improve muscle regeneration formation, resulting in better muscle functional recovery after myoinjury. This study was undertaken to explore the role of Nitric oxide (NO) during skeletal muscle inflammatory process, using a mouse model of Notexin induced myoinjury. Intramuscular injection (tibialis anterior, TA) of Notexin was performed for preparing mice myoinjury. NO synthase inhibitor (L-NAME) or NO donor (SNP) was intraperitoneally injected into model mice. On day 4 and 7 post-injury, expression of muscle-autoantigens and toll-like receptors (TLRs) was evaluated from muscle tissue by qRT-PCR and Western Blot; the intramuscular infiltration of monocytes/macrophage (CD11b+ or F4/80+ cells), CD8+ T cell (CD3ε+CD8α+), apoptotic cell (CD11b+caspase3+), and MHC-I molecule H-2Kb-expressing myofibers in damaged muscle were assessed by imunoflourecence analysis; the mRNAs expression of cytokines and chemokines associated with the preferential biological role during the muscle damage-induced inflammation response, were assessed by qRT-PCR. We detected the reduced monocytes/macrophages infiltration, and increased apoptotic cells in the damaged muscle treated with SNP comparing to untreatment. As well, SNP treatment down-regulated mRNA and protein levels of muscle autoantigens, TLR3, and mRNA levels of TNF-α, IL-6, MCP-1, MCP-3, and MIP-1α in damaged muscle. On the contrary, L-NAME induced more severe intramuscular infiltration of inflammatory cells, and mRNA level elevation of the above inflammatory mediators. Notably, we observed an increased number of MHC-I (H2-Kb) positive new myofibers, and of the infiltrated CD8+ T cells in damaged muscle at the day 7 after L-NAME treatment. The result herein shows that, NO can act as an endogenous anti-inflammatory molecule during the ongoing muscle inflammation. Our finding may provide new insight to optimize NO-based therapies for improving muscle regeneration after myoinjury.  相似文献   

11.
12.
Skeletal muscle has been rendered fatigue resistant by chronic stimulation and therefore has potential as an active substitute for damaged myocardium. It is therefore important to know whether stimulation produces any deleterious effects in the long term. Hemidiaphragm muscles of four dogs were examined after chronic stimulation for 1 yr at either 2 or 4 Hz. The stimulated hemidiaphragms appeared normal on gross inspection and were still contracting vigorously. By histochemical and immunohistochemical criteria, they had acquired a uniformly type I character, in contrast to the mixed fiber type composition of the unstimulated hemidiaphragms. This transformation was also reflected in their complement of myosin isozymes. There was some enzymatic evidence of an associated shift towards aerobic pathways of energy generation. Histological examination revealed no evidence of degenerative changes. Trends, observed in the shorter term (6-8 wk), toward a decrease in fiber area and an increase in connective tissue showed no further progression at 1 yr. Thus hemidiaphragm muscle stimulated at frequencies at or above the normal heart rate does not appear to undergo adverse long-term changes that would constrain its use in a myocardial assist role.  相似文献   

13.
14.
To determine possible age differences in muscle damage response to strength training, ultrastructural muscle damage was assessed in seven 20- to 30-yr-old and six 65- to 75-yr-old previously sedentary women after heavy-resistance strength training (HRST). Subjects performed unilateral knee-extension exercise 3 days/wk for 9 wk. Bilateral muscle biopsies from the vastus lateralis were assessed for muscle damage via electron microscopy. HRST resulted in a 38 and 25% increase in strength in the young and older women, respectively (P < 0.05), but there were no between-group differences. In the young women, 2-4% of muscle fibers exhibited damage before and after training in both the trained and untrained legs (P = not significant). In contrast, muscle damage increased significantly after HRST, from 5 to 17% of fibers damaged (P < 0.01), in the older women in the trained leg compared with only 2 and 5% of fibers damaged in the untrained leg before and after training, respectively. The present results indicate that older women exhibit higher levels of muscle damage after chronic HRST than do young women.  相似文献   

15.
Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.  相似文献   

16.
The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.  相似文献   

17.
According to the current opinion, lymph‐heart striated muscle represents a specialized type of skeletal muscles in frogs. Here, we studied muscle fibers in mechanically damaged lymph hearts during the first postoperative week using electron‐microscopic autoradiography. We present evidence that both, the satellite cells and pre‐existing muscle fibers bordering the site of injury, contribute directly to the lymph‐heart muscle regeneration. Several muscle fibers located in the vicinity of the damaged area displayed features of nuclear and sarcoplasmic activation. We also observed ultrastructural changes indicating activation of a few satellite cells, namely decondensation of chromatin, enlargement of nuclei and nucleoli, appearance of free ribosomes and rough endoplasmic reticulum tubules in the cytoplasm. Electron‐microscopic autoradiography showed that 4 h after single 3H‐thymidine administration on the seventh day after injury not only the activated satellite cells, but also some nuclei of myofibers bordering the injured zone are labeled. We showed that both, the myonuclei of fibers displaying the signs of degenerative/reparative processes in the sarcoplasm and the myonuclei of the fibers enriched with highly organized myofibrils, can re‐enter into the S‐phase. Our results indicate that the nuclei of lymph‐heart myofibers can reactivate DNA synthesis during regenerative myogenesis, unlike the situation in regenerating frog skeletal muscle where myogenic cells do not synthesize DNA at the onset of myofibrillogenesis. J. Morphol. 276:1525–1534, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Summary Soleus, extensor digitorum longus and tibialis anterior muscles of mice voluntarily running in wheels for periods of 5 to 120 days were studied in spaced serial and serial cross-sections. Shortly after the onset of running and during the next 2 weeks, degeneration, necrosis, phagocytosis and regeneration of muscle fibers, satellite cell proliferation and cellular infiltration were found in soleus muscles of mice from all strains investigated (CBA/J, NMRI, C57b, NIH, SWS and Balb/c). Tibialis anterior but not extensor digitorum longus muscles were also damaged. Predominantly high-oxidative fibers were affected (both slow-oxidative and fast oxidative glycolytic in soleus, fast-oxidative glycolytic in tibialis anterior). Denervated soleus muscles that had been passively stretched during running were not damaged. Evidence was found that, during the early period of running, split fibers form by myogenesis within (regeneration) or outside (satellite cell proliferation) necrotic muscle fiber segments. Split fibers persisted in solei of long-term (2 to 3 months) exercised CBA/J but not NMRI mice. In 6 out of 20 solei of CBA/J runners exercised for 2 months or longer, fiber-type grouping was observed in the areas where extensive damage usually occurred in the early periods. The results show that different muscles are damaged and repaired to varying degrees and that marked interstrain and inter-individual differences are present. It appears that acute muscle injury occurring upon onset of voluntary running is a usual event in the adaptation of muscles to altered use.  相似文献   

19.
Mesenchymal stem cells (MSCs) are widely used in experimental research on cell therapy intended for the stimulation of repair processes in damaged tissues and organs. The present review summarizes the results of studies devoted to the possible directions of MSC differentiation after the transplantation of these cells into damaged nerves or special engineered structures of biological and artificial biodegradable materials that join the ends of a damaged nerve (nerve conduits). Data on exogenous MSC differentiation into Schwann cells, pericytes, smooth muscle cells, endotheliocytes, and other cell types are presented. Methods for preliminary MSC differentiation in vitro and examples of beneficial effects of these cells transplanted into damaged conductive nerves on nerve regeneration are given. The fate of exogenous MSCs placed into an unnatural biological niche remains poorly characterized and requires further studies, as emphasized in the review.  相似文献   

20.
The limited ability of damaged muscle to regenerate after gross injuries is a major clinical problem. To date, there is no effective therapeutic treatment for muscle injuries. In the present study, we have examined the ability of crude and fractionated human skeletal muscle extracts to promote myogenic cell proliferation and differentiation. It was found that the crude muscle extract could significantly stimulate BrdU incorporation in C2C12 myogenic cell line. In addition, the extract also promoted myogenic cell alignment and fusion. Using electrophoresis techniques, in conjunction with in vitro refolding technique, a protein with molecular weight of approximately 40 kDa was identified that could produce the same effects as the crude muscle exdtract. We also tested the ability of semipurified (30-50 kDa) muscle extract to promote muscle repair in adult rats. Surgical intervention was used to induce muscle damage in the tibialis anterior. The semipurified muscle extract (fraction H) was injected subcutaneously over the tibialis anterior for a period of 5 days. It was found that the damaged muscle fibers were replaced by newly regenerated muscle fibers. These newly regenerated fibers originated from the fusion of differentiated satellite cells as revealed by BrdU-labeling analysis. In contrast, the injury site of muscles treated with BSA control protein contained mainly fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号