首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the ActA protein of Listeria monocytogenes has been partially elucidated. These results illustrate the sophistication with which intracellular pathogens like Listeria use the host cell to their advantage, and have provided new insights into some of the molecular mechanisms of complex cell functions such as actin-promoted cell motility. The clarification of these processes is of fundamental importance not only for understanding elementary processes such as development and growth, but also for the treatment of both diseases caused by cytopathogenic bacteria such as Listeria and pathophysiological processes arising from disorders in cell motility and cell adhesion.  相似文献   

2.
The epidermis at the tip of the optic tentacle in Limax flavus is constructed of columnar epithelial cells, distal processes of nerve cells, and scattered processes of the collar cells. The epithelial cells extend stout microvilli called plasmatic processes by Wright perpendicularly from the free surface. Each plasmic process branches into a few terminal twigs embedded in a fuzzy filamentous substance. Most nerve cells have their nuclei under the basal lamina. The distal processes of these nerve cells reach the free surface and send long microvilli to form the spongy layer under a filamentous covering. At the side surface of the tentacle the epithelial cells are cuboidal or squamous and the neural elements are fewer. Here, no spongy layer is formed; and the collar cell processes are replaced by the lateral cell processes. Peculiar secretion granules are contained in the lateral and collar cell processes as well as in their cell bodies situated beneath the basal lamina.  相似文献   

3.
Time-dependent regulations of cells and organisms can be analysed at different levels. One of these levels is the periodicity of cell functions such as cell division, metabolic processes (generation of ATP by glycolysis or oxidative mitochondrial processes) and the biosynthesis of cell constituents. Studies carried out on unicellular eukaryotes revealed the periodic, oscillatory nature of most of these processes. Time constants of these reactions vary from nanoseconds to hours-days, necessitating coupling mechanisms. Comparative studies revealed the coupling of the rapid processes (mitochondrial ATP generation) to the slower rhythms of the biosynthetic processes of macromolecules. Adenine nucleotides are involved in the coupling mechanisms between rapid and slow processes ("the slow dance of life to the music of time"). The mechanisms underlying these rhythmic processes involve either key allosteric regulatory enzymes (PFK for glycolysis) or "desensitization" of receptors by phosphorylation-dephosphorylation. At the organismic level the study of rhythmic processes is illustrated by the periodicity of heart beats, shown to exhibit multifractality, following apparently the formalism of deterministic chaos. Another example is the rhythmic oscillatory discharges of neuronal networks. The existence of subrhythmes mostly of epigenetic nature, facilitated probably the progressive adjustment of cells during evolution to the slow increase of day time since the separation of the moon from the earth. We analysed the mechanisms underlying the decline of these processes during aging. Loss of receptors or/and their uncoupling from their transmission pathway appear to be involved in most of these processes of decline. One conclusion of this review is the importance of epigenetic mechanisms both in the genesis and in the decline of these rythmic processes involved in time keeping by the cell.  相似文献   

4.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   

5.
Quantitative and qualitative chromosome rearrangements in the cell line G1 established from a genital ridge of the 12,5 dpc BALB/c mouse embryo were analysed. Cytogenetic analysis was performed on the 75th passage of in vitro cultivation. It has been shown that by this passage the cell population was heterogenous. It is suggested that such heterogeneity may be caused by realization of two simultaneous processes namely the cell polyploidization and their secondary diploidization. These processes were accompanied by some chromosome destructions, and the creation of small new acrocentric chromosomes and large aberrant chromosomes as well as Robertsonian translocations. The present study demonstrates in vitro karyotype evolution of the mouse cell line G1 including the increased instability of the chromosome apparatus.  相似文献   

6.
Summary The principal cells of the epithelium in the small intestine of the marsupial Perameles nasuta were studied with the electron microscope. The cells in the lower parts of the crypts are undifferentiated and have a high nucleo-cytoplasmic ratio and an abundance of free ribosomes. As the cells move upwards to take their place in the surface epithelium covering the mucosal folds their nucleo-cytoplasmic ratio and the number of free ribosomes decrease, the cells elongate and develop a brush border, a system of microtubules in the apical cytoplasm, a terminal web, terminal bars and desmosomes.The brush border develops from a series of cell processes interdigitating with those from the opposite cell. Spaces arising between the cell processes gradually separate the contiguous cells and the cell processes become microvilli which increase in number and become uniform in size and shape. The Golgi complex gives rise to small vesicles with a different membrane structure than that of the Golgi membranes themselves. It is suggested that the microtubules do not arise as tubular invaginations of the surface membrane but that they develop from the Golgi vesicles.  相似文献   

7.
The principal aim of systems biology is to search for general principles that govern living systems. We develop an abstract dynamic model of a cell, rooted in Mesarovi? and Takahara's general systems theory. In this conceptual framework the function of the cell is delineated by the dynamic processes it can realize. We abstract basic cellular processes, i.e., metabolism, signalling, gene expression, into a mapping and consider cell functions, i.e., cell differentiation, proliferation, etc. as processes that determine the basic cellular processes that realize a particular cell function. We then postulate the existence of a 'coordination principle' that determines cell function. These ideas are condensed into a theorem: If basic cellular processes for the control and regulation of cell functions are present, then the coordination of cell functions is realized autonomously from within the system. Inspired by Robert Rosen's notion of closure to efficient causation, introduced as a necessary condition for a natural system to be an organism, we show that for a mathematical model of a self-organizing cell the associated category must be cartesian closed. Although the semantics of our cell model differ from Rosen's (M,R)-systems, the proof of our theorem supports (in parts) Rosen's argument that living cells have non-simulable properties. Whereas models that form cartesian closed categories can capture self-organization (which is a, if not the, fundamental property of living systems), conventional computer simulations of these models (such as virtual cells) cannot. Simulations can mimic living systems, but they are not like living systems.  相似文献   

8.
The investigations were performed on 32 tumors of the CNS of fibrillary and gemistocyte type of astrocytoma from which the cultures were derived. The dissociated culture was used and the cells were seeded direct on glass. The MEM was supplemented with calf serum and embryonal extract. The cells maintained in culture for 21 days. They developed multiple or single long and delicate processes which originated a network of relative high density. SEM observations indicate that the cell established intercellular connections through spikes and surfaces of the processes and cell bodies. TEM studies have shown that the cell to cell connections are very tight but the contacts between the cell processes are similar to those described by DUFFY as punctate connections. The addition of PGE2 does not disturb the reconstruction of intercellular communication. The estimation of GFAP antigenicity of the investigated cells proved their astrocytic origin and revealed that the intermediate fibres are in the cell processes, and in the location of the contacts between cells.  相似文献   

9.
The sequence of differentiation of the cerebellar granule cell in chick embryos from the eighth to the 15th days of incubation has been studied in Golgi-stained celloidin sections. In the germinal-cell phase, the presumptive granule cell sends out one or two horizontal processes which may originate either in the body of the cell or in the extension which attaches it to the pial surface. Thus the germinal cell may be converted into either a monopolar or a bipolar presumptive granular cell. Bipolar cells may have two processes of the same length (symmetrical cells) or of unequal length (asymmetrical cells). In the symmetrical as well as asymmetrical bipolar cells the leading process is formed, by means of which the perikaryon emigrates until it situates itself definitely in the internal granular layer. Thus, symmetrical and asymmetrical bipolar cells give rise to a granule cell with parallel fibers of equal or different lengths. The monopolar element may originate a second process or may remain in the monopolar phase until it reaches the internal granular layer. Once there, it completes the formation of the parallel fibers.  相似文献   

10.
The compound eye of Munida irrasa differs in several respects from the typical decapod eye. The proximal pigment is found only in retinula cells. The eccentric cell is extremely large and expanded to fill the interstices of the crystalline tract area; thus, a typical "clear-zone" is absent. Six retinula cells course distally to screen two sides of the crystalline cone. There are approximately 12,500 ommatidia in each compound eye. There are several similarities to the typical decapod eye. Each ommatidium is composed of a typical cornea, corneagenous cells, crystalline cone cells, crystalline cone, crystalline cone tract and eight retinula cells. Distal pigment cells are present and surround the crystalline cone. The distal processes of the retinula cells also contain pigment. The retinula cell processes penetrate the basement membrane as fascicles composed of processes from adjacent retinulae.  相似文献   

11.
Summary Evidence is provided from cinematography and electron microscopy that chemical processes are responsible for both plasma membrane synthesis and cell separation in dividing germ cells of the grasshopper. Polyribosome-like material is deposited as a ring equatorially, which determines the presumptive division plane. The material deposited at the division plane, in synergism with cytoplasmic material and existing plasma membrane, synthesizes the new plasma membrane. The polyribosome-like material polymerizes into helices, and as the coils of the helices tighten less surface becomes available for membrane synthesis. The decreasing rate of plasma membrane synthesis is the mechanism for cell separation. Thus, plasma membrane synthesis and cell separation occur simultaneously, directed by the same dynamic processes.Work supported under the auspices of the U. S. Atomic Energy Commission.  相似文献   

12.
Trubnikova OB 《Ontogenez》2003,34(2):142-153
The inhibitor of protein synthesis cycloheximide, inhibitor of steroidogenesis aminoglutethimide, and inhibitor of prostaglandin synthesis indomethacin, as well as the drugs affecting the cell cytoskeleton, such as cytochalasin B and colchicine, were used for studying the mechanisms of ovulation in the stellate sturgeon Acipenser stellatus Pall. Follicles were isolated from the body cavity within certain time intervals after the injection of pituitary suspension to a female and cultivated in media with the inhibitors. In the case of follicles isolated in the middle of the period from hormonal injection until ovulation, cycloheximide, cytochalasin B, and aminoglutethimide suppressed ovulation most effectively, while in the case of oocytes isolated during the last quarter of this period, aminoglutethimide and cytochalasin B were the most effective. It was shown using TEM and SEM that cycloheximide suppressed all processes related to the preparation for ovulation, except the initial ones: contraction of follicle cells and their processes and secondary flattening of these cells. In the presence of aminoglutethimide, the follicle cells underwent pathological changes. Incubation in the media containing indomethacin and colchicine prevented degradation of the outer theca layer at the follicle apex. In the presence of cytochalasin B affecting the cytoskeleton, the drawing of follicle cell processes from the jelly coat channels was blocked, the outer theca cells were strongly contracted, but the cell layer integrity was affected and it was divided in separate fragments. A relationship is discussed between the metabolic processes and morphological changes that lead to ovulation. It was proposed on the basis of the present and previous data that the preovulatory preparation of the follicle tissues comprises two contractile and two apoptotic processes distinctly coordinated in time and space.  相似文献   

13.
Thin sections of cartilage from the chondrocranium of cuttle fish and octopus were examined using the transmission electron microscope. It was found that cephalopod chondrocytes differed considerably from the chondrocytes of vertebrate cartilage; in particular they possessed many long and ramifying cytoplasmic processes and had an ultrastructure typical of protein-secreting cells. They did not, however, contain secretory granules; while vesicles and rough endoplasmic reticulum cisternae seemed to open directly to the cell surface. The cell body and processes contained cytoskeletal structures: microtubules were easily recognized, but intermediate and thin filaments were difficult to make out as they were frequently clumped into bundles. Some chondrocytes contained conspicuous accumulations of hemocyanin. The cytoplasmic processes possessed intercellular contacts similar to gap junctions. Also present on processes and the cell body were cell-extracellular matrix focal adhesions. The chondrocytes were not polarized or arranged in any preferential spatial order, however, with their processes they formed a three-dimensional network throughout the cartilage tissue. Ultrastructural findings are discussed in relation to the singular morphofunctional characteristics of cephalopod cartilage which shares features with both the cartilage and bone of vertebrates.  相似文献   

14.
The final length of the root cell is the result of a series of prooesses which represent a transition of the growing cell from its origin up to the completion of its elongation. These processes are associated on the one hand with cell proliferation, or, after the termination of proliferation, with the proceeding DNA synthesis, and with cell elongation on the other. The group of properties characterizing the growth region of the root as a cytologically heterogeneous complex, is at the same time the group of causes which affect the length of root cells. The individual cases documented in the paper point out the fact that the mechanisms regulating growth processes, have a locally limited action, often only within one single cell, and that they are simultaneously subordinated to the regulatory mechanism which controls the growth of the root as an entirety.  相似文献   

15.
Cell movement is guided by the rigidity of the substrate   总被引:30,自引:0,他引:30       下载免费PDF全文
Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.  相似文献   

16.
Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.  相似文献   

17.
The bag cells in the abdominal ganglion of Aplysia californica control egg-laying behavior by releasing a polypeptide (ELH) during an afterdischarge of synchronous action potentials. We have used intracellular injection of Lucifer Yellow to study the morphology and interconnections of the bag cells. These neurosecretory cells are typically multipolar and their processes extend in all directions out from the bag cell clusters into the surrounding connective tissue, where they branch in a complex manner. In some of the dye injection experiments, dye transfer from the injected cell to neighboring cells was observed. Freeze fracture of the bag cell clusters and their surrounding connective tissue revealed numerous gap junctions on bag cell processes within the clusters as well as on more distal processes. We have also examined the morphology and coupling between bag cells in primary culture. As in the intact ganglion, bag cells in culture were found to be multipolar. All pairs of bag cells whose somata or processes had formed contacts in culture were electrically coupled. The strongest coupling was observed between pairs of cells whose somata appeared closely apposed. In these cases transfer of Lucifer Yellow between cells could also be observed. It is therefore likely that the synchrony of bag cell action potentials during a bag cell afterdischarge is a result of coupling between individual cells in the bag cell cluster.  相似文献   

18.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

19.
The ventriculus mesencephali in the rat proceeds in the colliculi posterior region from the mesencephalic aqueduct in the dorsal direction. The ependymal lining is formed by flat, cuboid and cylindrical cells. The cylindrical cells, which occur in all parts of the ventriculus mesencephali, are the most numerous. The cuboid cells are localized mainly in the anterior part, the flat ones in the posterior part of the ventriculus mesencephali. Some cuboid and cylindrical cells have short basal processes. Among the ependymal cells, there are cells with long basal processes. The ependyma is at sites interrupted by flocks of ependymal cells. On the cell surface, there area cilia, microvilli and protoplasmic extrusions. The cell nuclei are spherical to oval. Supraependymally, there are homogeneous globules and intraventricular fibres. The histological variability of ependymal cells may point to the active participation of these cells in functional processes, even within such a small part of the ventricle system as the ventriculus mesencephali.  相似文献   

20.
Summary In order to investigate the ultrastructure of the migrating cells in anuran gastrulae, three anurans, which belong to three different genera, were observed with transmission electron microscopy supported by light microscopy of the 1 m sections and scanning electron microscopy. Fine filopodial cell processes, as well as cell processes probably flattened against the inner surface of the blastocoel wall, were formed by the migrating cells. Blebs and lobopodial cell processes were frequently observed inBufo, sometimes inXenopus, but not observed inRana. Microfilaments were observed in the cell processes. Focal close contacts, probably having adhesive properties, were made between the migrating cells and the inner surface of the blastocoel wall. These observations suggest that the cells migrate along the inner surface of the blastocoel wall by forming filopodia and pseudopodia flattened against the wall. The role of the blebs and lobopodial cell processes requires more investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号