首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

2.
In this study, the contribution of liver glycogenolysis and gluconeogenesis in the defense against short-term insulin induced hypoglycemia (IIH) was investigated. For this purpose, we used an experimental model in which IIH was obtained by administering an IP injection of a pharmacological dose (1 U/kg) of regular insulin to rats that had been deprived of food for a period of six hours. This experimental model is suitable to study the simultaneous participation of glycogen breakdown and gluconeogenesis in the defense against IIH. The livers of IIH rats showed insignificant changes in the glycogen concentration, total phosphorylase, active phosphorylase, and percent of active phosphorylase. Our results also indicated that the livers of IIH rats that received the concentration of L-alanine, L-glutamine, L-lactate, or glycerol found in the blood during IIH (basal values) showed negligible glucose production. Nonetheless, glucose, urea, and pyruvate production increased (P<0.05) if the livers were perfused with a saturating concentration of gluconeogenic precursors. In agreement with these results, IIH rats that received intragastric L-alanine, L-glutamine, or L-lactate showed increased (P<0.05) glycemia 30 min after the administration of these substances. However, when using glycerol, higher glycemia (P<0.05) was observed at 2 and 5 min, but not 30 min after the administration of this hepatic gluconeogenic precursor. Thus, we can conclude that the oral availability of gluconeogenic precursors could allow for their use as important antidote in the defense against IIH.  相似文献   

3.
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short‐term insulin‐induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg?1). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L‐alanine (5 mM), L‐lactate (2 mM), L‐glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L‐lactate and pyruvate production from L‐alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L‐lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L‐glutamine than livers from COG rats and, in the IIH rats, the production of glucose from L‐glutamine was higher than that from L‐alanine. The higher glucose production in livers from the IIH group, when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together, the results suggest that L‐glutamine is better than L‐alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Idiopathic infantile hypercalcemia (IIH) is a mineral metabolism disorder characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. The periodical increase in incidence of IIH, which occurred in the twentieth century in the United Kingdom, Poland, and West Germany, turned out to be a side effect of rickets over-prophylaxis. It was recently discovered that the condition is linked to two genes, CYP24A1 and SLC34A1. The aim of the study was to search for pathogenic variants of the genes in adult persons who were shortlisted in infancy as IIH caused by “hypersensitivity to vit. D”. All persons were found to carry mutations in CYP24A1 or SLC34A1, nine and two persons respectively. The changes were biallelic, with one exception. Incidence of IIH in Polish population estimated on the basis of allele frequency of recurrent p.R396W CYP24A1 variant, is 1:32,465 births. It indicates that at least a thousand homozygotes and compound heterozygotes with risk of IIH live in the country. Differences in mechanism of developing hypercalcemia indicate that its prevention may vary in both IIH defects. Theoretically, vit. D restriction is a first indication for CYP24A1 defect (which disturbs 1,25(OH)2D degradation) and phosphate supplementation for SLC34A1 defect (which impairs renal phosphate transport). In conclusion, we suggest that molecular testing for CYP24A1 and SLC34A1 mutations should be performed in each case of idiopathic hypercalcemia/hypercalciuria, both in children and adults, to determine the proper way for acute treatment and complications prevention.  相似文献   

6.
Summary. Our purpose was to determine the blood amino acid concentration during insulin induced hypoglycemia (IIH) and examine if the administration of alanine or glutamine could help glycemia recovery in fasted rats. IIH was obtained by an intraperitoneal injection of regular insulin (1.0 U/kg). The blood levels of the majority of amino acids, including alanine and glutamine were decreased (P < 0.05) during IIH and this change correlates well with the duration than the intensity of hypoglycemia. On the other hand, the oral and intraperitoneal administration of alanine (100 mg/kg) or glutamine (100 mg/kg) accelerates glucose recovery. This effect was partly at least consequence of the increased capacity of the livers from IIH group to produce glucose from alanine and glutamine. It was concluded that the blood amino acids availability during IIH, particularly alanine and glutamine, play a pivotal role in recovery from hypoglycemia.  相似文献   

7.
Hypoglycaemic coma and brain injury are potential complications of insulin therapy. Hippocampal neurons are particularly vulnerable to hypoglycaemic stress leading to memory impairment. In the present article, we have investigated the dopamine (DA) content, homovanillic acid (HVA)/DA turnover ratio, DA D1 and DA D2 receptors in the hippocampus of insulin-induced hypoglycaemic (IIH) and streptozotocin induced diabetic rats where brain functions are impaired. The DA content decreased significantly in hippocampus of diabetic, diabetic +IIH and control +IIH rats compared to control. The HVA/DA turnover ratio also increased significantly in diabetic, diabetic +IIH and control +IIH rats compared to control. Scatchard analysis using [3H] DA in the hippocampus showed a significant increase in DA receptors of diabetic, diabetic +IIH and control +IIH rats with decreased affinity. Gene expression studies using Real-time PCR showed an increased expression of DA D1 and DA D2 receptors in the hippocampus of hypoglycaemic and diabetic rats. Our results indicate that the dopaminergic system is impaired in the hippocampus of hypoglycaemic and hyperglycaemic rats impairing DA related functions of hippocampus. We observed a prominent dopaminergic functional disturbance in the hypoglycaemic condition than in hyperglycaemia compared to control. This dopaminergic dysfunction in hippocampus during hypoglycaemia and hyperglycaemia is suggested to contribute to cognitive and memory deficits. This will have clinical significance in the treatment of diabetes.  相似文献   

8.
Inguinal hernia is a common disease, most cases of which are indirect inguinal hernia (IIH). Genetic factors play an important role for inguinal hernia. Increased incidences of inguinal hernia have been reported in patients with 22q11.2 microdeletion syndrome, which is mainly caused by TBX1 gene mutations. Thus, we hypothesized that altered TBX1 gene expression may contribute to IIH development. In this study, the human TBX1 gene promoter was genetically analyzed in children with IIH (n = 100) and ethnic-matched controls (n = 167). Functions of DNA sequence variants (DSVs) within the TBX1 gene promoter were examined in cultured human fibroblast cells. The results showed that two heterozygous DSVs were found, both of which were single nucleotide polymorphisms. One DSV, g.4248 C>T (rs41298629), was identified in a 2-year-old boy with right-sided IIH, but not in all controls, which significantly decreased TBX1 gene promoter activity. Another DSV, g.4199 C>T (rs41260844), was found in both IIH patients and controls with similar frequencies (P > 0.05), which did not affect TBX1 gene promoter activity. Collectively, our data suggested that the DSV within the TBX1 gene promoter may change TBX1 level, contributing to IIH development as a rare risk factor. Underlying molecular mechanisms need to be established.  相似文献   

9.
We have previously reported that repeated bouts of insulin-induced hypoglycemia (IIH) in the rat result in blunted activation of the paraventricular, arcuate, and dorsomedial hypothalamic (DMH) nuclei. Because DMH activation has been implicated in the sympathoadrenal and hypothalamic-pituitary-adrenal (HPA) responses to stressors, we hypothesized that its blunted activation may play a role in the impaired counterregulatory response that is also observed with repeated bouts of IIH. In the present study, we evaluated the role of normal DMH activation in the counterregulatory response to a single bout of IIH. Local infusion of lidocaine (n = 8) to inactivate the DMH during a 2-h bout of IIH resulted in a significant overall decrease of the ACTH response and a delay of onset of the corticosterone response compared with vehicle-infused controls (n = 9). We observed suppression of the ACTH response at time (t) = 90 and 120 min (50 +/- 12 and 63 +/- 6%, respectively, of control levels) and early suppression of the corticosterone response at t = 30 min (59 +/- 13% of the control level). The epinephrine, norepinephrine, and glucagon responses were not altered by DMH inactivation. Our finding suggests that DMH inactivation may play a specific role in decreasing the HPA axis response after repeated bouts of IIH.  相似文献   

10.
Benign intracranial hypertension (BIH) or idiopathic intracranial hypertension (IIH) is a rare disorder of unknown etiology that is most often seen in obese women of reproductive age (19.3/100,000) and is reported only occasionally during pregnancy. Both pregnancy and exogenous estrogens are thought to promote IIH or worsen it. It can occur in any trimester during pregnancy, and the visual outcome is the same as for nonpregnant patients with IIH. There is no increase in fetal wastage; therapeutic abortion to limit its progression is not indicated, and subsequent pregnancies do not increase the risk of recurrence. Most therapies used during the nonpregnant state can also be used during pregnancy. The aim of treatment is to preserve vision and improve symptoms. Treatments include analgesics, diuretics, steroids, and serial lumbar punctures. When medical therapy fails, surgical procedures need to be considered. Although this condition has been reviewed often, the issue of mode of delivery, especially when papilledema has not resolved, is unclear. We report on 3 women with IIH during pregnancy and review the choice of therapy and mode of delivery.  相似文献   

11.
Gluconeogenesis and ketogenesis of in situ rat perfused liver submitted to short-term insulin-induced hypoglycaemia (IIH) were investigated. For this purpose, 24-h fasted rats that received intraperitoneal (ip) regular insulin (1.0 U kg(-1)) or saline were compared. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. For gluconeogenesis studies, livers from the IIH and COG groups were perfused with increasing concentrations (from basal blood concentrations until saturating concentration) of glycerol, L-lactate (Lac) or pyruvate (Pyr). Livers of the IIH group showed maintained efficiency to produce glucose from glycerol and higher efficiency to produce glucose from Lac and Pyr. In agreement with these results the oral administration of glycerol (100 mg kg(-1)), Lac (100 mg kg(-1)), Pyr (100 mg kg(-1)) or glycerol (100 mg kg(-1)) + Lac (100 mg kg(-1)) + Pyr (100 mg kg(-1)) promoted glycaemia recovery. It can be inferred that the increased portal availability of Lac, Pyr and glycerol could help glycaemia recovery by a mechanism mediated, partly at least, by a maintained (glycerol) or increased (Lac and Pyr) hepatic efficiency to produce glucose. Moreover, in spite of the fact that insulin inhibits ketogenesis, the capacity of the liver to produce ketone bodies from octanoate during IIH was maintained.  相似文献   

12.
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.  相似文献   

13.
Zhang P  Hu H 《Glycobiology》2012,22(2):235-247
Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in the formation of a phosphoryl glycan branch on O-linked mannose or it modifies complex N- and mucin O-glycans. In this study, we overexpressed LARGE in neural stem cells deficient in protein O-mannosyltransferase 2 (POMT2), an enzyme required for O-mannosyl glycosylation. The results showed that overexpressing LARGE did not lead to hyperglycosylation of α-DG in POMT2 knockout (KO) cells but did generate IIH6C4 and VIA4-1 immunoreactivity and laminin-binding activity. Additionally, overexpressing LARGE in cells deficient in both POMT2 and α-DG generated laminin-binding IIH6C4 immunoreactivity. These results indicate that LARGE expression resulted in the glycosylation of proteins other than α-DG in the absence of O-mannosyl glycosylation. The IIH6C4 immunoreactivity generated in double-KO cells was largely removed by treatment either with peptide N-glycosidase F or with cold aqueous hydrofluoric acid, suggesting that LARGE expression caused phosphoryl glycosylation of N-glycans. However, the glycosylation of α-DG by LARGE is dependent on POMT2, indicating that LARGE expression only modifies O-linked mannosyl glycans of α-DG. Thus, LARGE expression mediates the phosphoryl glycosylation of not only O-mannosyl glycans including those on α-DG but also N-glycans on proteins other than α-DG.  相似文献   

14.
The acute effects of isolated and combined L-alanine (L-Ala) and L-glutamine (L-Gln) on liver gluconeogenesis, ureagenesis and glycaemic recovery during short-term insulin-induced hypoglycaemia (IIH) were investigated. For this purpose, 24-h fasted rats that received intraperitoneal injection of regular insulin (1.0 U/Kg) were investigated. The control group (COG group) were represented by rats which received saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. Livers from IIH and COG groups were perfused with basal or saturating levels of L-Ala, L-Gln or L-Gln + L-Ala (L-G + L-A). The production of glucose, urea, L-lactate and pyruvate in livers from IIH and COG group were markedly increased (p < 0.001) when perfused with saturating levels of L-Ala, L-Gln or L-G + L-A compared with basal levels of the same substrates. In addition, livers from IIH rats showed greater ability in producing glucose and urea from saturating levels of L-Ala compared with L-Gln or L-G + L-A. In agreement with these results, the oral administration of L-Ala (100 mg/kg) promoted better glycaemic recovery than L-Gln (100 mg/kg) or the combination of L-G (50 mg/kg) + L-A (50 mg/kg). It can be concluded that L-Ala, but not L-Gln or L-G + L-A could help glycaemic recovery by a mechanism mediated, partly at least, by the increased gluconeogenic and ureagenic efficiency of L-Ala.  相似文献   

15.
《The Journal of cell biology》1995,129(4):1093-1101
The distribution of alpha-dystroglycan (alpha DG) relative to acetylcholine receptors (AChRs) and neural agrin was examined by immunofluorescent staining with mAb IIH6 in cultures of nerve and muscle cells derived from Xenopus embryos. In Western blots probed with mAb IIH6, alpha DG was evident in membrane extracts of Xenopus muscle but not brain. alpha DG immunofluorescence was present at virtually all synaptic clusters of AChRs and neural agrin. Even microclusters of AChRs and agrin at synapses no older than 1-2 h (the earliest examined) had alpha DG associated with them. alpha DG was also colocalized at the submicrometer level with AChRs at nonsynaptic clusters that have little or no agrin. The number of large (> 4 microns) nonsynaptic clusters of alpha DG, like the number of large nonsynaptic clusters of AChRs, was much lower on innervated than on noninnervated cells. When mAb IIH6 was included in the culture medium, the large nonsynaptic clusters appeared fragmented and less compact, but the accumulation of agrin and AChRs along nerve-muscle contacts was not prevented. It is concluded that during nerve-muscle synaptogenesis, alpha DG undergoes the same nerve- induced changes in distribution as AChRs. We propose a diffusion trap model in which the alpha DG-transmembrane complex participates in the anchoring and recruitment of AChRs and alpha DG during the formation of synaptic as well as nonsynaptic AChR clusters.  相似文献   

16.
Ketogenesis, inferred by the production of acetoacetate plus ß‐hydroxybutyrate, in isolated perfused livers from 24‐h fasted diabetic rats submitted to short‐term insulin‐induced hypoglycemia (IIH) was investigated. For this purpose, alloxan‐diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg?1) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg?1) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short‐term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ß‐hydroxybutyrate from octanoate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.

Background

Complications of idiopathic intracranial hypertension (IIH) are usually caused by elevated intracranial pressure (ICP). In a similar way as in the optic nerve, elevated ICP could also compromise the olfactory nerve system. On the other side, there is growing evidence that an extensive lymphatic network system around the olfactory nerves could be disturbed in cerebrospinal fluid disorders like IIH. The hypothesis that patients with IIH suffer from hyposmia has been suggested in the past. However, this has not been proven in clinical studies yet. This pilot study investigates whether structural changes of the olfactory nerve system can be detected in patients with IIH.

Methodology/Principal Findings

Twenty-three patients with IIH and 23 matched controls were included. Olfactory bulb volume (OBV) and sulcus olfactorius (OS) depth were calculated by magnetic resonance techniques. While mean values of total OBV (128.7±38.4 vs. 130.0±32.6 mm3, p=0.90) and mean OS depth (8.5±1.2 vs. 8.6±1.1 mm, p=0.91) were similar in both groups, Pearson correlation showed that patients with a shorter medical history IIH revealed a smaller OBV (r=0.53, p<0.01). In untreated symptomatic patients (n=7), the effect was greater (r=0.76, p<0.05). Patients who suffered from IIH for less than one year (n=8), total OBV was significantly smaller than in matched controls (116.6±24.3 vs. 149.3±22.2 mm3, p=0.01). IIH patients with visual disturbances (n=21) revealed a lower OS depth than patients without (8.3±0.9 vs. 10.8±1.0 mm, p<0.01).

Conclusions/Significance

The results suggest that morphological changes of the olfactory nerve system could be present in IIH patients at an early stage of disease.  相似文献   

18.
19.
20.
Rats that develop diet-induced obesity (DIO) on a 31% fat [high-energy (HE)] diet have defective sensing and responding to altered glucose levels compared with diet-resistant (DR) rats. Thus we postulated that they would also have defective counterregulatory responses (CRR) to insulin-induced hypoglycemia (IIH). Chow-fed selectively bred DIO and DR rats underwent three sequential 60-min bouts of IIH separated by 48 h. Glucose levels fell comparably, but DIO rats had 22-29% lower plasma epinephrine (Epi) levels during the first two bouts than DR rats. By the third trial, despite comparable Epi levels, DIO rats had lower 30-min glucose levels and rebounded less than DR rats 85 min after intravenous glucose. Although DIO rats gained more carcass and fat weight after 4 wk on an HE diet than DR rats, they were unaffected by prior IIH. Compared with controls, DR rats with prior IIH and HE diet had higher arcuate nucleus neuropeptide Y (50%) and proopiomelanocortin (POMC; 37%) mRNA and an inverse correlation (r = 0.85; P = 0.004) between POMC expression and body weight gain on the HE diet. These data suggest that DIO rats have a preexisting defect in their CRR to IIH but that IIH does not affect the expression of their hypothalamic neuropeptides or weight gain as it does in DR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号