首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fasciclin I is a homophilic neural cell adhesion molecule which is regionally expressed on a subset of fasciculating axons in both the grasshopper and Drosophila embryo, suggesting a role in axonal recognition. It is also dynamically expressed on a variety of other embryonic tissues. Biochemical analysis of the fasciclin I glycoprotein from Drosophila embryonic membranes and Schneider 1 cells indicates that it is tightly associated with the lipid bilayer by a phosphatidylinositol lipid moiety. In Drosophila embryos a large fraction of fasciclin I protein has lost its membrane anchor. The ratio of this soluble form to the phosphatidylinositol-linked form changes during embryogenesis. We speculate that removal of the phosphatidylinositol lipid from the fasciclin I protein could be a mechanism to regulate its adhesive function.  相似文献   

2.
The insect cell adhesion receptor fasciclin II is expressed by specific subsets of neural and non-neural cells during embryogenesis and has been shown to control growth cone motility and axonal fasciculation. Here we demonstrate a role for fasciclin II in the guidance of migratory neurons. In the developing enteric nervous system of the moth Manduca sexta, an identified set of neurons (the EP cells) undergoes a stereotyped sequence of migration along the visceral muscle bands of the midgut prior to their differentiation. Probes specific for Manduca fasciclin II show that while the EP cells express fasciclin II throughout embryogenesis, their muscle band pathways express fasciclin II only during the migratory period. Manipulations of fasciclin II in embryonic culture using blocking antibodies, recombinant fasciclin II fragments, and enzymatic removal of glycosyl phosphatidylinositol-linked fasciclin II produced concentration-dependent reductions in the extent of EP cell migration. These results support a novel role for fasciclin II, indicating that this homophilic adhesion molecule is required for the promotion or guidance of neuronal migration.  相似文献   

3.
Drosophila fasciclin I is a homophilic cell adhesion molecule expressed in the developing embryo on the surface of a subset of fasciculating CNS axons, all PNS axons, and some nonneuronal cells. We have identified protein-null mutations in the fasciclin I (fas I) gene, and show that these mutants are viable and do not display gross defects in nervous system morphogenesis. The Drosophila Abelson (abl) proto-oncogene homolog encodes a cytoplasmic tyrosine kinase that is expressed during embryogenesis primarily in developing CNS axons; abl mutants show no gross defects in CNS morphogenesis. However, embryos doubly mutant for fas I and abl display major defects in CNS axon pathways, particularly in the commissural tracts where expression of these two proteins normally overlaps. The double mutant shows a clear defect in growth cone guidance; for example, the RP1 growth cone (normally fas I positive) does not follow its normal path across the commissure.  相似文献   

4.
Fasciclin III: a novel homophilic adhesion molecule in Drosophila   总被引:16,自引:0,他引:16  
P M Snow  A J Bieber  C S Goodman 《Cell》1989,59(2):313-323
Drosophila fasciclin III is an integral membrane glycoprotein that is expressed on a subset of neurons and fasciculating axons in the developing CNS, as well as in several other tissues during development. Here we report on the isolation of a full-length cDNA encoding an 80 kd form of fasciclin III. We have used this cDNA, under heat shock control, to transfect the relatively nonadhesive Drosophila S2 cell line. Examination of these transfected cells indicates that fasciclin III is capable of mediating adhesion in a homophilic, Ca2+-independent manner. Sequence analysis reveals that fasciclin III encodes a transmembrane protein with no significant homology to any known protein, including the previously characterized families of vertebrate cell adhesion molecules. The distribution of this adhesion molecule on subsets of fasciculating axons and growth cones during Drosophila development suggests that fasciclin III plays a role in growth cone guidance.  相似文献   

5.
A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.  相似文献   

6.
O Huber  M Sumper 《The EMBO journal》1994,13(18):4212-4222
Proof that plants possess homologs of animal adhesion proteins is lacking. In this paper we describe the generation of monoclonal antibodies that interfere with cell-cell contacts in the 4-cell embryo of the multicellular alga Volvox carteri, resulting in a hole between the cells. The number of following cell divisions is reduced and the cell division pattern is altered drastically. Antibodies given at a later stage of embryogenesis specifically inhibit inversion of the embryo, a morphogenetic movement that turns the embryo inside out. Immunofluorescence microscopy localizes the antigen (Algal-CAM) at cell contact sites of the developing embryo. Algal-CAM is a protein with a three-domain structure: an N-terminal extensin-like domain characteristic for plant cell walls and two repeats with homology to fasciclin I, a cell adhesion molecule involved in the neuronal development of Drosophila. Alternatively spliced variants of Algal-CAM mRNA were detected that are produced under developmental control. Thus, Algal-CAM is the first plant homolog of animal adhesion proteins.  相似文献   

7.
The ARK (AXL, UFO) receptor is a member of a new family of receptor tyrosine kinases whose extracellular domain contains a combination of fibronectin type III and immunoglobulin motifs similar to those found in many cell adhesion molecules. ARK mRNA is expressed at high levels in the mouse brain, prevalently in the hippocampus and cerebellum, and this pattern of expression resembles that of adhesion molecules that are capable of promoting cell aggregation through homophilic or heterophilic binding. We report here the ability of the murine ARK receptor to mediate homophilic binding. Expression of the ARK protein in Drosophila S2 cells induces formation of cell aggregates consisting of ARK-expressing cells, and aggregation leads to receptor activation, with an increase in receptor phosphorylation. Homophilic binding does not require ARK tyrosine kinase activity, since S2 cells expressing a receptor in which the intracellular domain was deleted were able to undergo aggregation as well as cells expressing the wild-type ARK receptor. Similar results were obtained with NIH 3T3 and CHO cells expressing high levels of ARK, although in this case ARK expression appeared to be accompanied by constitutive activation. The purified recombinant extracellular domain of ARK can induce homotypic aggregation of coated fluorescent beads (Covaspheres), and this protein can also function as a substrate for adhesion by S2 and NIH 3T3 cells expressing ARK. These results suggest that ARK represents a new cell adhesion molecule that through its homophilic interaction may regulate cellular functions during cell recognition.  相似文献   

8.
During development of the primary olfactory projection, olfactory receptor axons must sort by odor specificity and seek particular sites in the brain in which to create odor-specific glomeruli. In the moth Manduca sexta, we showed previously that fasciclin II, a cell adhesion molecule in the immunoglobulin superfamily, is expressed by the axons of a subset of olfactory receptor neurons during development and that, in a specialized glia-rich "sorting zone," these axons segregate from nonfasciclin II-expressing axons before entering the neuropil of the glomerular layer. The segregation into fasciclin II-positive fascicles is dependent on the presence of the glial cells in the sorting zone. Here, we explore the expression patterns for different isoforms of Manduca fasciclin II in the developing olfactory system. We find that olfactory receptor axons express transmembrane fasciclin II during the period of axonal ingrowth and glomerulus development. Fascicles of TM-fasciclin II+ axons target certain glomeruli and avoid others, such as the sexually dimorphic glomeruli. These results suggest that TM-fasciclin II may play a role in the sorting and guidance of the axons. GPI-linked forms of fasciclin II are expressed weakly by glial cells associated with the receptor axons before they reach the sorting zone, but not by sorting-zone glia. GPI-fasciclin II may, therefore, be involved in axon-glia interactions related to stabilization of axons in the nerve, but probably not related to sorting.  相似文献   

9.
Insect metamorphosis serves as a useful model to investigate postembryonic development in the central nervous system, because the transformation between larval and adult life is accompanied by a remodeling of neural circuitry. Most changes are controlled by ecdysteroids, but activity-dependent mechanisms and cell surface signals also play a role. This immunocytochemical study investigates the expression patterns of two isoforms of the neural cell adhesion molecule, fasciclin II (FasII), during postembryonic ventral nerve cord remodeling in the moth, Manduca sexta. Both the expression of the glycosyl-phosphatidylinositol (GPI)-linked isoform and the transmembrane isoform of Manduca FasII (TM-MFasII) are regulated in a stereotyped spatio-temporal pattern. TM-MFasII is expressed in a stage-specific manner in a subset of neurons. Subsets of central axons express high levels during outgrowth supporting a functional role for TM-FasII during pathfinding. Dendritic localization is not found at any stage of metamorphosis, suggesting no homophilic interactions of TM-MFasII during central synapse development. GPI-MFasII is expressed in a stage-specific manner, most likely only in glial cells. The larval and adult stages show almost no GPI-MFasII expression, whereas during pupal life, positive GPI-MFasII labeling is present around synaptotagmin-negative tracts or commissures, so that either homophilic stabilization of glial boundaries or heterophilic neuron-glial interactions possibly stabilize the axons within their tracts. GPI-MFasII expression is not co-localized with synaptotagmin-positive central terminals, rendering a role for synapse development unlikely. Neither isoform is expressed in all neurons of a specific class at any developmental stage, indicating that MFasII functions are restricted to specific subsets of neurons or to individual neurons. The support of the German Science Foundation (Du 331/4–1) and of Arizona State University to C.D. is greatly appreciated.  相似文献   

10.
K Zinn  L McAllister  C S Goodman 《Cell》1988,53(4):577-587
The fasciclin I, II, and III glycoproteins are expressed on different subsets of axon bundles (fascicles) in insect embryos and are thus candidates for surface recognition molecules involved in growth cone guidance. Here we present the sequence of grasshopper fasciclin I and the identification and sequence of the Drosophila fasciclin I homolog. In both species, fasciclin I appears to be an extrinsic membrane protein with a signal sequence but no transmembrane region; the protein comprises four homologous domains of approximately 150 amino acids each. Antibodies against Drosophila fasciclin I reveal that it is expressed on the surface of a subset of commissural axon pathways in the embryonic central nervous system and on all sensory axon pathways in the peripheral nervous system. This pattern of expression is similar to that in grasshopper.  相似文献   

11.
Fasciclin I, a neuronal cell adhesion molecule, was first identified in the grasshopper. To date, various fasciclin I-like proteins have been identified but their biological functions have not been well characterized. Here, we have purified a fasciclin I-like protein with a molecular weight of 33kDa from sea urchin (Strongylocentrotus intermedius) ovaries using hydrophobic chromatography and gel filtration. The protein was not N-glycosylated. Partial amino acid sequences of cyanogen bromide (CNBr)-cleaved fragments were highly conserved to other sea urchin fasciclin I-like proteins identified previously. The circular dichroism (CD) spectrum analysis demonstrated that the 33kDa protein contained high content of alpha-helical structure. These results suggest that the 33kDa protein is a fasciclin I-like family. Additionally, the fasciclin I-like protein promoted HT1080 human fibrosarcoma cell attachment. Further, a synthetic peptide (P1: GLREAANIAEQVDLRQVLRDVDL) of the protein corresponding to a highly conserved region of the fasciclin I-like family promoted heparin-dependent HT1080 cell attachment. Moreover, the peptide inhibited HT1080 cell attachment to the fasciclin I-like protein. These results suggest that the 33kDa protein from sea urchin ovaries isolated here is a member of the fasciclin I family and that the N-terminal region of the protein is important for cell attachment activity. The protein has a potential to be involved in biological functions in sea urchin as a cell adhesive molecule.  相似文献   

12.
Fasciclin III is an integral membrane protein expressed on a subset of axons in the developing Drosophila nervous system. It consists of an intracellular domain, a transmembrane region, and an extracellular region composed of three domains, each predicted to form an immunoglobulin-like fold. The most N-terminal of these domains is expected to be important in mediating cell-cell recognition events during nervous system development. To learn more about the structure/function relationships in this cellular recognition molecule, a model structure of this domain was built. A sequence-to-structure alignment algorithm was used to align the protein sequence of the fasciclin III first domain to the immunoglobulin McPC603 structure. Based on this alignment, a model of the domain was built using standard homology modeling techniques. Side-chain conformations were automatically modeled using a rotamer search algorithm and the model was minimized to relax atomic overlaps. The resulting model is compact and has chemical characteristics consistent with related globular protein structures. This model is a de novo test of the sequence-to-structure alignment algorithm and is currently being used as the basis for mutagenesis experiments to discern the parts of the fasciclin III protein that are necessary for homophilic molecular recognition in the developing Drosophila nervous system.  相似文献   

13.
During the formation of the enteric nervous system (ENS) of the moth Manduca sexta, identified populations of neurons and glial cells participate in precisely timed waves of migration. The cell adhesion receptor fasciclin II is expressed in the developing ENS and is required for normal migration. Previously, we identified two isoforms of Manduca fasciclin II (MFas II), a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II) and a transmembrane isoform (TM-MFas II). Using RNA and antibody probes, we found that these two isoforms were expressed in cell type-specific patterns: GPI-MFas II was expressed by glial cells and newly generated neurons, while TM-MFas II was confined to differentiating neurons. The expression of each isoform also corresponded to the motile state of the different cell types: GPI-MFas II was detected on tightly adherent or slowly spreading cells, while TM-MFas II was expressed by actively migrating neurons and was localized to their most motile regions. Manipulations of each isoform in embryo culture showed that they played distinct roles: whereas GPI-MFas II acted strictly as an adhesion molecule, TM-MFas II promoted the motility of the EP cells as well as maintaining fasciculation with their pathways. These results indicate that precisely regulated patterns of isoform expression govern the functions of fasciclin II within the developing nervous system.  相似文献   

14.
Gicerin, a novel cell adhesion molecule which belongs to the immunoglobulin superfamily, is expressed temporally and spatially in the developing chick brain and retina. The previous in vitro experiments using transfected cells showed that gicerin can function as a cell adhesion molecule which has both homophilic and heterophilic binding activities. For the in vivo analyses of gicerin in neural development, we tried to utilize a zebrafish system, a vertebrate suitable for studying early development. We generated transient transgenic animals by microinjecting DNA constructs into zebrafish embryos. Chicken gicerin, under control of the neurofilament gene promoter, was preferentially expressed in neuronal cells and gicerin-expressing neurons exibited a fasciculation formation with neighboring gicerin-positive axons, which may be partly due to homophilic cell adhesion activity of gicerin. These experimental results suggest that this fast and efficient transgenic animal system is useful for studying the functional roles of neuron-specific genes during the development. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

15.
N H Patel  P M Snow  C S Goodman 《Cell》1987,48(6):975-988
To identify candidates for neuronal recognition molecules in Drosophila, we used monoclonal antibodies to search for surface glycoproteins expressed on subsets of axon bundles (or fascicles) during development. Here we report on the characterization and cloning of fasciclin III, which is expressed on a subset of neurons and axon pathways in the Drosophila embryo. Fasciclin III is also expressed at other times and places including transient segmentally repeated patches in the neuroepithelium and segmentally repeated stripes in the body epidermis. Antisera generated against each of four highly related forms of the protein were used for cDNA expression cloning to identify a single gene, which was confirmed to encode fasciclin III by tissue in situ hybridization and genetic deficiency analysis.  相似文献   

16.
Fasciclin I is an insect neural cell adhesion molecule consisting of four FAS1 domains, homologs of which are present in many bacterial, plant, and animal proteins. The crystal structure of FAS1 domains 3 and 4 of Drosophila fasciclin I reveals a novel domain fold, consisting of a seven-stranded beta wedge and a number of alpha helices. The two domains are arranged in a linear fashion and interact through a substantial polar interface. Missense mutations in the FAS1 domains of the human protein betaig-h3 cause corneal dystrophies. Many mutations alter highly conserved core residues, but the two most common mutations, affecting Arg-124 and Arg-555, map to exposed alpha-helical regions, suggesting reduced protein solubility as the disease mechanism.  相似文献   

17.
The myelin P0 protein is glycosylated at a single site, asparagine 93, within its only immunoglobulin (Ig)-like domain. We have previously shown that P0 behaves like a homophilic adhesion molecule (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.). 344:871-872). To determine if the sugar residues of this molecule contribute to its adhesiveness, the glycosylation site was eliminated by replacing asparagine 93 with an alanine, through site- directed mutagenesis of the P0 cDNA. The mutated P0 cDNA was transfected into CHO cells and surface expression of the mutated P0 was assessed by immunofluorescence, limited trypsinization and an ELISA. A cell line was chosen which expressed approximately equivalent amounts of the unglcosylated P0 (UNGP0) at the cell surface as did a cell line expressing the fully glycosylated P0 (GPo); the adhesive properties of these two cell lines were compared. It was found that when a single cell suspension of the UNGPo cells were incubated, by 60 min, unlike the GP0 cells, they had not formed large aggregates; they were indistinguishable from the control transfected cells. This suggests that the UNGP0 protein does not behave like an adhesion molecule. To establish if only one molecule in the P0:P0 homophilic pair must be glycosylated for adhesion to occur, the ability of UNGP0 cells to adhere to GP0 cells was assessed both qualitatively and quantitatively. The results of both types of assay imply that, indeed, both P0 molecules in the homophilic pair must be glycosylated for adhesion to take place.  相似文献   

18.
fasiclin II (fas II), a member of the immunoglobulin superfamily, was previously characterized and cloned in grasshopper. To analyze the function of this molecule, we cloned the Drosophila fas II homolog and generated mutants in the gene. In both grasshopper and Drosophila, fasciclin II is expressed on the MP1 fascicle and a subset of other axon pathways. In fas II mutant Drosophila embryos, the CNS displays no gross phenotype, but the MP1 fascicle fails to develop. The MP1, dMP2, and vMP2 growth cones fail to recognize one another or other axons that normally join the MP1 pathway. During their normal period of axon out-growth, these growth cones stall and do not join any other neighboring pathway. Thus, fasciclin II functions as a neuronal recognition molecule for the MP1 axon pathway. These studies serve as molecular confirmation for the existence of functional labels on specific axon pathways in the developing nervous system.  相似文献   

19.
A Nose  V B Mahajan  C S Goodman 《Cell》1992,70(4):553-567
Each abdominal hemisegment in the Drosophila embryo contains a stereotyped array of 30 muscles, each specifically innervated by one or a few motoneurons. We screened 11,000 enhancer trap lines, isolated several expressing beta-galactosidase in small subsets of muscle fibers prior to innervation, and identified two of these as inserts in connectin and Toll, members of the leucine-rich repeat gene family. Connectin contains a signal sequence, ten leucine-rich repeats, and a putative phosphatidylinositol membrane linkage; in S2 cells, connectin can mediate homophilic cell adhesion. Connectin is expressed on the surface of eight muscles, the motoneurons that innervate them, and several glial cells along the pathways leading to them. During synapse formation, the protein localizes to synaptic sites; afterward, it largely disappears. Thus, connectin is a novel cell adhesion molecule whose expression suggests a role in target recognition.  相似文献   

20.
During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal-glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号