首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: Human breast cancer metastasizes mainly to lymph nodes, lungs, liver, and bone; in the majority of cases, it is the development of metastases which leads to death. In order to suppress mammary cancer metastasis, we applied in vivo electrogene transfer (non-viral method) as a means of interleukin-12 (IL-12) gene therapy on highly metastatic murine mammary cancer model. METHODS: Metastatic mammary tumors induced by inoculation in BALB/c female mice were treated by intratumoral injections of either a plasmid vector containing IL-12 or empty vector and then subjected to in vivo electrogene transfer once a week for 8 weeks. RESULTS: Treatment with IL-12 resulted in elevation of both IL-12 and IFNgamma levels in mammary tumors and in serum and intratumoral levels of CD4 and CD8 proteins were also increased. Tumor volumes and lymphatic and pulmonary metastases were significantly reduced. The histopathological changes induced by IL-12 characteristically included marked inflammation, increased apoptosis, decreased DNA synthesis, peripheral influx of significantly greater numbers of active macrophages, and reduced blood microvessel density, and apoptotic vascular endothelial cells were frequently seen. Western blotting showed decreases in VEGFR-3 of tumors exposed to IL-12 gene therapy. In adjuvant immunofluorescence studies, the CD31-positive endothelial cells of microvessels showed decreased VEGFR-3 expression in IL-12-treated tumors. However, apparent alterations in VEGFR-3 expression of podoplanin-positive lymphatic endothelial cells were not observed in IL-12-treated tumors. Although recombinant IL-12 did not inhibit tubular formation of human umbilical vein endothelial cells in a Matrigel assay, recombinant IFNgamma did completely suppress the tubular formation. CONCLUSIONS: In vivo electrogene transfer of IL-12 exerts strong anti-tumorigenic and anti-metastatic effects likely due to T-cell-mediated immune responses as well as anti-angiogenic action.  相似文献   

3.
We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.  相似文献   

4.
The mechanism of cytokine-induced shock remains poorly understood. The combination of IL-2 and IL-12 has synergistic antitumor activity in vivo, yet has been associated with significant toxicity. We examined the effects of IL-2 plus IL-12 in a murine model and found that the daily, simultaneous administration of IL-2 and IL-12 resulted in shock and 100% mortality within 4 to 12 days depending on the strain employed. Mice treated with IL-2 plus IL-12 exhibited NK cell apoptosis, pulmonary edema, degenerative lesions of the gastrointestinal tract, and elevated serum levels of proinflammatory cytokines and acute phase reactants. The actions of TNF-alpha, IFN-gamma, macrophage-inflammatory protein-1alpha, IL-1, IL-1-converting enzyme, Fas, perforin, inducible nitric oxide synthase, and STAT1 did not contribute to the observed toxicity, nor did B or T cells. However, toxicity and death from treatment with IL-2 plus IL-12 could be completely abrogated by elimination of NK cells. These results suggest that the fatal systemic inflammatory response induced by this cytokine treatment is critically dependent upon NK cells, but does not appear to be mediated by the known effector molecules of this cellular compartment. These data may provide insight into the pathogenesis of cytokine-induced shock in humans.  相似文献   

5.
6.
Experiments were undertaken to determine whether the depletion of CD4+ T cells from mice bearing an advanced immunogenic SA-1 sarcoma would result in an enhanced ability of interleukin-2 (IL-2) to cause tumor regression. The results show that whereas IL-2 therapy given as a 5-day course starting on day 10 of tumor growth caused complete regression of the tumor, it failed to cause regression if started on day 15 of tumor growth. However, in mice depleted of CD4+ T cells by treatment with anti-CD4 monoclonal antibody (mAb), IL-2 therapy started on day 15 resulted in appreciable tumor regression in most animals, and the therapeutic effect was greatly increased if two consccutive courses of anti-CD4 mAb and IL-2 therapy were given. On the other hand, treatment with anti-CD4 mAb alone had no effect on tumor growth. It was shown that the therapeutic action of combination therapy with anti-CD4 mAb and IL-2 was mediated by CD8+ T cells, because the therapeutic effect was completely ablated in mice depleted of CD8+ T cells with anti-CD8 mAb. Taken together these results suggest that, at a late stage of growth of an immunogenic tumor, depletion of CD4+ T cells can enhance the antitumor effect of IL-2 therapy by releasing CD8+-T-cell-mediated immunity from T-cell-mediated suppression.  相似文献   

7.
Pathology driving β-cell loss in diabetes is poorly defined. Chronic subclinical inflammation is associated with β-cell dysfunction. Acute in vitro exposure of islets and β-cells to an inflammatory cytokine cocktail (IL-1β/TNF-α/IFN-γ) results in loss of cell function and viability. The contribution of each cytokine alone or in combination has been evaluated in homogeneous mouse β-cell lines and primary mouse islets. Cytokine cooperation is required for β-cell apoptosis with the most potent combinations including IL-1β. Single cytokine exposure did not induce β-cell apoptosis. Expression of endogenous interleukin-12 in β-cells correlated with inflammatory cytokine combinations that induced β-cell apoptosis. Uncoupling of the IL-12 axis by a block of IL-12 production, inhibition of IL-12 receptor/ligand interaction or disruption of IL-12 receptor signaling conferred protection to β-cells from apoptosis induced by inflammatory cytokine stimulation. Signaling through STAT4 is indicated since disruption of IL-12 concomitantly reduced inflammatory cytokine stimulation of endogenous IFN-γ expression. Primary mouse islets isolated from mice deficient in STAT4 show resistance to inflammatory-cytokine-induced cell death when compared to islets isolated from wild type mice. Collectively, the data identify IL-12 as an important mediator of inflammation induced β-cell apoptosis. Modulation of IL-12/STAT4 signaling may be a valuable therapeutic strategy to preserve islet/β-cell viability in established diabetes.  相似文献   

8.
The epithelial cells of the mammary gland go through a cycle of growth, differentiation, and involution during pregnancy. Recently, we found that interleukin-10 (IL-10) was induced at the involution stage and contributed to apoptosis in the mammary gland. To elucidate the role of the epithelial cells in involution, we examined IL-10 expression in an in vitro model of HC11 cells, in various culture conditions. IL-10 was weakly expressed early in growth but when the cells were induced to differentiate by insulin and dexamethasone expression increased slightly. Prolactin in combination with insulin and dexamethasone caused a further increase. To mimic apoptosis the culture was deprived of serum as well as hormones, and this resulted in a gradual increase in IL-10. In contrast with its ligand, the IL-10 receptor itself was not expressed in any conditions. We speculate that release of IL-10 from the epithelial cells recruits lymphocytes, which have IL-10 receptors on their cell membranes, and they in turn secrete death factors inducing apoptosis of the epithelial cells.  相似文献   

9.
Single intratumoural treatment of nude mice with a vaccinia virus (VV)-expressing interleukin-1 (IL-2) or IL-12 induced significant tumour growth inhibition associated with clear signs of toxicity. At a low virus dose, only some treated animals showed signs of toxicity. We characterized and compared the activity of NK and B cells and major pro-inflammatory factors (IFN-gamma, TNF-alpha) in treated animals with and without toxicity. One week after treatment animals exhibiting signs of cytokine-related toxicity showed dramatic increases in several measured parameters. High leukocyte and lymphocyte counts in blood and marked increases in NK and CD25(+)cells in both blood and spleen were associated with IL-2-induced toxicity, while IL-12-induced toxicity was related to a great elevation of CD25(+)cells in blood and CD71(+)cells in the spleen. In contrast, immune activation in animals free of toxicity was observed on day 2 after the treatment, which drastically declined by day 7. Thus, immune responses induced by IL-2 and IL-12 therapy appear to play important roles in both tumour inhibition and the accompanying toxicity. Short-term effects induced by IL-2 and IL-12 could be critical for antitumour therapy that prolongs survival and protects from adverse side effects.  相似文献   

10.
《Life sciences》1994,54(20):PL351-PL361
Use of the anti-viral drug zidovudine in the treatment of acquired immunodeficiency syndrome (AIDS) has been associated with the development of hematopoietic toxicity. Several hematopoietic growth factors have been investigated in their ability to modulate such toxicity: however, no single factor has been demonstrated to produce restoration of hematopoiesis following use with zidovudine. We report results describing the effect of combination interleukin-1 (IL-1) and erythropoietin (Epo) in their ability to modulate the hematopoietic toxicity associated with dose-escalation zidovudine administered in normal mice. When administered over a six-week period, IL-1 and Epo raised the packed red cell volume, white blood cell and platelet counts in control mice and mice receiving dose-escalation zidovudine. These effects were attributed in part to the ability of combination IL-1 and Epo to increase erythroid, myeloid and megakaryocyte progenitor stem cells from bone marrow and spleen. These results indicate that use of combined IL-1 and Epo may be efficacious in ameliorating the hematopoietic toxicity associated with the use of zidovudine.  相似文献   

11.
We tried a infusion of interleukin-2 (IL-2) of a relatively low dose via an intrasplenic arterial catheter connected to a chronometric infusion (IS-IL-2). Eighteen patients of colorectal cancer with metastases to the liver or lung or of unresectable hepatoma received a 24 hour continuous infusion with low dose recombinant of IL-2 (mainly 8 × 105 JRU/day) for 25–40 days. All patients tolerated this protocol of the therapy and the main toxic effects were fever and general fatigue. Such serious toxicity as previously reported by high dose IL-2 therapy was not observed. Data of hepatic and renal functions were normal. IS-IL-2 therapy induced a high incidence of eosinophilia (12/18) and thrombocythemia (12/18). Peripheral natural killer (NK) and LAK activities were augmented in all patients and total white blood cell counts were increased during IS-IL-2 therapy. An increase in IL-2 receptor expression of peripheral blood mononuclear cells and significant rises in numbers of Leull (CD16)+, OKMl(CD11)+ and OKIal(HLA-DR)+ were observed. Of 18 patients 12 were evaluable for their response to therapy. Partial response (PR) was observed in one unresectable hepatoma and 11 demonstrated no change (NC) or progressive disease (PD). Six patients were not evaluable because of additional therapy (3 cases) or decreasing tumor cell markers having no measurable lesions (3 cases). Three patients of colorectal cancer from an unresectable group were presumed to have micrometastases to the liver as suggested by an elevated serum CEA level. After receiving IS-IL-2 therapy they demonstrated a decrease in the serum CEA level for more than 3 years after treatment. We conclude that continuous IS-IL-2 administration can result in an increase of their therapeutic efficacy of IL-2 administration and in a decrease its toxicity.  相似文献   

12.
Endothelin-1 (ET-1), nitric oxide, and cytokines are recognized mediators of the inflammatory processes associated with gastric mucosal injury. In this study, we investigated mucosal expression of ET-1, interleukin-4 (IL-4), and the activity of constitutive nitric oxide synthase (cNOS) during indomethacin-induced gastric mucosal injury, and evaluated the effect of antiulcer agents on this process. The experiments were conducted with groups of rats pretreated intragastrically with ranitidine (100 mg/kg), ebrotidine (100 mg/kg), sulglycotide (200 mg/kg) or vehicle, followed 30 min later by an intragastric dose of indomethacin (60 mg/kg). The animals were killed 2 h later and their mucosal tissue subjected to macroscopic damage assessment and the measurements of epithelial cell apoptosis, ET-1, IL-4, and cNOS. In the absence of antiulcer agents, indomethacin caused multiple hemorrhagic lesions and extensive epithelial cell apoptosis, accompanied by a 20.7% reduction in IL-4, a 3.1-fold increase in mucosal expression of ET-1 and a 4.2-fold decline in cNOS. Pretreatment with H2-receptor antagonist, ranitidine produced a 15.7% reduction in the mucosal damage caused by indomethacin, 29.5% decrease in epithelial cell apoptosis and a 19.6% reduction in ET-1, while the expression of IL-4 increased by 10.8% and that of cNOS showed a 2-fold increase. The H2-blocker, ebrotidine, also known for its gastroprotective effects, reduced the indomethacin-induced lesions by 90.2%, epithelial cell apoptosis decreased by 61% and ET-1 showed a 58.2% decline, while IL-4 increased by 30.6% and that of cNOS showed a 3.1-fold increase. Pretreatment with gastroprotective agent, sulglycotide, led to a 51.2% reduction in the extent of mucosal damage caused by indomethacin, a 43.9% decrease in apoptosis, and a 63.5% decrease in ET-1, while the expression of cNOS increased by 3.4-fold and the level of IL-4 showed a 32.2% increase. The results suggest that an increase in vasoconstrictive ET-1 level combined with a decrease in regulatory cytokine, IL-4, and a loss of compensatory action by cNOS may be responsible for gastric mucosal injury caused by indomethacin. Our findings also point to a value of ebrotidine and sulglycotide in countering the untoward gastrointestinal side effects of NSAID therapy.  相似文献   

13.
We investigated the course of events associated with gastric ulcer healing by analyzing mucosal expression of interleukin-4 (IL-4), endothelin-1 (ET-1), tumor necrosis factor-alpha (TNF-alpha), and the activity of constitutive (cNOS) and inducible nitric oxide synthase (NOS-2). Ulcer onset was characterized by a massive epithelial apoptosis associated with a 5.7-fold increase in TNF-alpha, a 17.5-fold increase in NOS-2, and a 3.9-fold increase in ET-1, while mucosal expression of cNOS showed a 7.6-fold drop and IL-4 fell by 37.2%. Healing was accompanied by a rapid raise in IL-4; decrease in apoptosis, TNF-alpha, ET-1, and NOS-2; and a slow recovery in cNOS. The expression of IL-4 returned to control levels by the 7th day of healing and that of ET-1 and TNF-alpha by the 14th day, while apoptotic DNA fragmentation and the activity of NOS-2 remained significantly elevated beyond the 14-day period. The results suggest that a decrease in the mucosal level of IL-4 at ulcer onset may well be a key factor causing dysregulation of ET-1 production, induction of TNF-alpha, and triggering the apoptotic events that affect the efficiency of mucosal repair.  相似文献   

14.
Smac mimetic compounds (SMCs) potentiate TNFα-mediated cancer cell death by targeting the inhibitor of apoptosis (IAP) proteins. In addition to TNFα, the tumor microenvironment is exposed to a number of pro-inflammatory cytokines, including IL-1β. Here, we investigated the potential impact of IL-1β on SMC-mediated death of cancer cells. Synergy was seen in a subset of a diverse panel of 21 cancer cell lines to the combination of SMC and IL-1β treatment, which required IL-1β-induced activation of the NF-κB pathway. Elevated NF-κB activity resulted in the production of TNFα, which led to apoptosis dependent on caspase-8 and RIP1. In addition, concurrent silencing of cIAP1, cIAP2, and X-linked IAP by siRNA was most effective for triggering IL-1β-mediated cell death. Importantly, SMC-resistant cells that produced TNFα in response to IL-1β treatment were converted to an SMC-sensitive phenotype by c-FLIP knockdown. Reciprocally, ectopic expression of c-FLIP blocked cell death caused by combined SMC and IL-1β treatment in sensitive cancer cells. Together, our study indicates that a positive feed-forward loop by pro-inflammatory cytokines can be exploited by SMCs to induce apoptosis in cancer cells.  相似文献   

15.
Monoclonal antibody (mAb) therapy was first established upon the approval of a mouse antibody for treatment of human acute organ rejection. However, the high incidence of immune response against the mouse mAb restricted therapeutic utility. Development of chimeric, “humanized” and human mAbs broadened therapeutic application to immune-mediated diseases requiring long-term treatment. Indeed, mAb therapeutics targeting soluble cytokines are highly effective in numerous immune-mediated disorders. A recent example is ustekinumab, a first-in-class therapeutic human immunoglobulin (Ig) G1 kappa mAb that binds to the interleukins (IL)-12 and IL-23, cytokines that modulate lymphocyte function, including T-helper (Th) 1 and Th17 cell subsets. Ustekinumab was generated via recombinant human IL-12 immunization of human Ig (hu-Ig) transgenic mice. Ustekinumab binds to the p40 subunit common to IL-12 and IL-23 and prevents their interaction with the IL-12 receptor β1 subunit of the IL-12 and IL-23 receptor complexes. Ustekinumab is approved for treatment of moderate-to-severe plaque psoriasis and has demonstrated efficacy in Crohn disease and psoriatic arthritis. The clinical characterization of ustekinumab continues to refine our understanding of human immune pathologies and may offer a novel therapeutic option for certain immune-mediated diseases.Key words: ustekinumab, psoriasis, monoclonal antibody, interleukin-12/23p40  相似文献   

16.
Summary The antitumor effect of interleukin-2 (IL-2), alone and in combination with cyclophosphamide was assessed in mice with established sarcoma (MCA 105, H-2b), carcinoma (M109, H-2d) and T lymphoma (PIR-2, H-2b). Whereas administration of IL-2 alone (5×104–10×104 U, i.p. twice daily, for 4–8 consecutive days) prolonged the survival of mice with the solid neoplasms, it enhanced tumor growth and decreased survival of mice with the lymphoma. In the PIR-2 lymphoma, no IL-2 receptor (TAC) could be detected, nor could we demonstrate IL-2 tumor growth stimulation in vitro. A synergistic therapeutic effect was achieved in mice with the solid tumors, but not in mice with the lymphoma, only when IL-2 was given 1–4 days after cyclophosphamide (100–200 mg/kg). Conversely, administration of IL-2 1–4 days prior to cyclophosphamide resulted, in all three tumor systems, in enhanced tumor growth and in decreased survival as compared with mice receiving cyclophosphamide alone. Similarly, treatment with IL-2 both before and after cyclophosphamide was less efficacious than a single course of IL-2 given after-wards. It is concluded that for maximal therapeutic efficacy, IL-2 should be administered following chemotherapy, and that certain tumors may respond adversely to IL-2 treatment.  相似文献   

17.
 There is strong evidence that antitumor activity of interleukin-12 (IL-12) in vivo is mediated, in part, through interferon (IFNγ) produced by IL-12-stimulated natural killer and T cells. Since IFNγ and tumor necrosis factor α (TNFα) have been reported to synergize in antitumor effects in a number of models, we decided to examine whether the combined treatment with recombinant mouse IL-12 and recombinant human TNFα would produce similar effects. The efficacy of the combined IL-12/TNFα immunotherapy was evaluated in three tumor models in mice: B16F10 melanoma, Lewis lung (LL/2) carcinoma and L1 sarcoma. Intratumoral daily injections of 1 μg IL-12 in combination with 5 μg TNFα into B16F10-melanoma-bearing mice resulted in a significant retardation of the tumor growth as compared with that in controls and in mice treated with either cytokine alone. Similar effects were obtained using 0.1 μg IL-12 and 5 μg TNFα in LL/2 carcinoma and L1 sarcoma models. Antitumor activity against L1 sarcoma was still preserved when TNFα at a low dose (1 μg) was combined with 0.1 μg IL-12 and applied for a prolonged time. Potentiation of antitumor effects, which was observed in IL-12/TNFα-based immunotherapy, could result from at least three different mechanisms, partly related to stimulation of IFNγ and TNFα production in treated mice: (a) direct cytostatic/cytotoxic effects on tumor cells, (b) induction of antitumor activity of macrophages, and (c) inhibition of blood vessel formation in the tumor. Our studies demonstrate that combination tumor immunotherapy with IL-12 and TNFα may be more effective than single-cytokine treatment, and suggest possible mechanisms by which IL-12 and TNFα may exert potentiated therapeutic effects against locally growing tumors. Received: 17 February 1997 / Accepted: 5 August 1997  相似文献   

18.
Mechanisms of leukocyte-mediated tissue injury induced by interleukin-2   总被引:3,自引:0,他引:3  
In this review we discuss the effects of interleukin-2 (IL-2) therapy on trafficking of leukocytes and platelets to normal organs. The use of animal models has allowed the elucidation of events leading to damage and/or dysfunction of normal tissues after IL-2 administration. These studies have shown that acute toxicity induced by IL-2 is mediated primarily by neutrophils. Chronic toxicity results from the adhesion and transmigration of activated lymphocytes into normal organs. Platelet-derived microvascular thrombosis also contributes to the vascular toxicity of IL-2. A better understanding of these mechanisms may lead to the development of interventions that will significantly improve the therapeutic efficacy of IL-2. Received: 22 August 1998 / Accepted: 16 October 1998  相似文献   

19.
Recently it has been recognized that IL-1 plays an important role in hematopoietic regulation. Administration of 5-fluorouracil (5-FU) to mice causes prolonged neutropenia. rHIL-1 injected to mice after 5-FU, accelerated the recovery of hematopoietic progenitors and blood neutrophils. The combination of rhIL-1 and rhG-CSF reduced the neutropenic period significantly. Sublethal irradiation of mice induced profound neutropenia for 3 weeks which was associated with 80% mortality. Administration of rhIL-1 20 hours prior to or 2 hours post irradiation resulted in a significantly improved survival and rapid recovery of the neutrophil count. IL-1 administered alone or in combination with other colony stimulating factors to spontaneous breast tumor bearing mice following 5-FU therapy resulted in a rapid recovery of neutrophils, improved survival, and markedly reduced the tumor mass. Experiments in primates demonstrated that rhIL-1 administered to 5-FU treated animals shortened the neutropenic period from 30 to 17 days and increased the number of marrow progenitors responsive to other CSFs. Prolonged administration of IL-1 (14 days) to these animals resulted in a delayed neutrophil recovery as compared to animals receiving short courses of IL-1. rhIL-1 administered to primates receiving marrow grafts after lethal irradiation, did not result in rapid hematopoietic recovery. In humans, studies with CD-34 positive marrow cells showed that IL-1 had a radioprotective effect on a committed and early marrow progenitors. These data show the therapeutic potential of IL-1 in the treatment of chemoradiotherapy induced myelosuppression.  相似文献   

20.
 Interleukin(IL)-15, which uses IL-2 receptor (R) β and γ chains for signal transduction, shares many of the biological activities of IL-2. We examined the effects of exogenous IL-15 on protection in a murine malignant pleurisy model using BALB/c mice and syngeneic MethA fibrosarcoma (MethA). Intrapleural administration of IL-15 significantly prolonged the survival time of mice after an intrapleural inoculation of MethA, whereas the same dose of IL-2 did not. The in vivo antitumor effect of IL-15 was synergistically enhanced by additive administration of IL-12. Combination therapy of IL-15 and IL-12 protected mice from death from bloody pleural fluid. Such treatment induced marked increases in the number of CD3-IL-2Rβ+ cells corresponding to natural killer (NK) cells and the production of interferon γ (IFNγ) by T cells in the thoracic exudate cells (TEC). Administration of anti-IFNγ mAb partly inhibited the protective effect of a combination of IL-15 and IL-12. A tumor-neutralizing (Winn) assay revealed that the antitumor activity of effector cells in the TEC was abrogated by treatment with anti-CD8 mAb or anti-asialoGM1 Ab plus complement. Thus, treatment with IL-15 in combination with IL-12 may enhance the activities of NK and CD8+ T cells in the TEC, providing strong antitumor activity against the malignant pleurisy. These results suggest that IL-15 together with IL-12 may have potential for the immunotherapy of some types of malignant pleurisy. Received: 13 July 1999 / Accepted: 3 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号