首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonequilibrium molecular dynamics simulations were used to calculate the elastic properties of a spectrin repeat unit. A contiguous alpha-helical linker was constructed by employing periodic boundary conditions, allowing a novel scheme for evaluating the thermodynamic force as a function of extension. By measuring the force-extension response under small extensions, spectrin was observed to behave primarily as an elastic material with a spring constant of 1700 +/- 100 pN/nm. The implications of this spring constant, in terms of the properties of the spectrin tetramer, are also discussed.  相似文献   

2.
Spectrin repeats are three-helix bundle structures which occur in a large number of diverse proteins, either as single copies or in tandem arrangements of multiple repeats. They can serve structural purposes, by coordination of cytoskeletal interactions with high spatial precision, as well as a 'switchboard' for interactions with multiple proteins with a more regulatory role. We describe the structure of the alpha-actinin spectrin repeats as a prototypical example, their assembly in a defined antiparallel dimer, and the interactions of spectrin repeats with multiple other proteins. The alpha-actinin rod domain shares several features common to other spectrin repeats. (1) The rod domain forms a rigid connection between two actin-binding domains positioned at the two ends of the alpha-actinin dimer. The exact distance and rigidity are important, for example, for organizing the muscle Z-line and maintaining its architecture during muscle contraction. (2) The spectrin repeats of alpha-actinin have evolved to make tight antiparallel homodimer contacts. (3) The spectrin repeats are important interaction sites for multiple structural and signalling proteins. The interactions of spectrin repeats are, however, diverse and defy any simple classification of their preferred interaction sites, which is possible for other domains (e.g. src-homology domains 3 or 2). Nevertheless, the binding properties of the repeats perform important roles in the biology of the proteins where they are found, and lead to the assembly of complex, multiprotein structures involved both in cytoskeletal architecture as well as in forming large signal transduction complexes.  相似文献   

3.
Spectrin is a vital and abundant protein of the cytoskeleton. It has an elongated structure that is made by a chain of so-called spectrin repeats. Each repeat contains three antiparallel alpha-helices that form a coiled-coil structure. Spectrin forms an oligomeric structure that is able to cross-link actin filaments. In red cells, the spectrin/actin meshwork underlying cell membrane is thought to be responsible for special elastic properties of the cell. In order to determine mechanical unfolding properties of the spectrin repeat, we have used single molecule force spectroscopy to study the states of unfolding of an engineered polymeric protein consisting of identical spectrin domains. We demonstrate that the unfolding of spectrin domains can occur in a stepwise fashion during stretching. The force-extension patterns exhibit features that are compatible with the existence of at least one intermediate between the folded and the completely unfolded conformation. Only those polypeptides that still contain multiple intact repeats display intermediates, indicating a stabilisation effect. Precise force spectroscopy measurements on single molecules using engineered protein constructs reveal states and transitions during the mechanical unfolding of spectrin. Single molecule force spectroscopy appears to open a new window for the analysis of transition probabilities between different conformational states.  相似文献   

4.
The basic repeat unit of a Chironomus Balbiani ring gene.   总被引:4,自引:1,他引:4       下载免费PDF全文
A clone derived from the Balbiani ring b (BRb) gene of Chironomus thummi has been used to study the internal organization of that gene. Much of the gene consists of approximately 80 copies of a ca. 300 bp repeat unit, which are tandemly organized. The BRb clone contains a major part of that unit (242 bp). Sequence analysis shows that approximately 60% of the unit corresponds to short, tandemly organized subsequences, which encode peptides 8 to 11 residues long. In turn, each subsequence consists of even shorter internal repeats, corresponding to a tripeptide (consensus Proline. Serine. Lysine.). The remainder of the ca. 300 bp unit probably does not have obvious repetitive substructure.  相似文献   

5.
6.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   

7.
Medial gastrocnemius surface electromyographic activity and intramuscular electromyographic activity were recorded from six individuals with chronic cervical spinal cord injury to document the recruitment order of motor units during clonus. Four subjects induced clonus that lasted up to 30 s while two subjects induced clonus that they actively stopped after 1 min. Mean clonus frequency in different subjects ranged from 4.7 to 7.0 Hz. Most of the 166 motor units recorded during clonus (98%) fired once during each contraction but at slightly different times during each cycle. Other motor units fired during some clonus cycles (1%) or in bursts (1%). When 59 pairs of units were monitored over consecutive clonus cycles (n = 5-89 cycles), only 8 pairs of units altered their recruitment order in some cycles. Recruitment reversals only occurred in units that fired close together in the clonus cycle. These data demonstrate that orderly motor unit recruitment occurs during involuntary contractions of muscles paralyzed chronically by cervical spinal cord injury, providing further support for the importance of spinal mechanisms in the control of human motor unit behavior.  相似文献   

8.
Incubation of isolated rat alveolar epithelial type II cells with secretagogues (calcium ionophore, ATP or terbutaline) resulted in rapid proteolysis of lung spectrin and appearance of multiple proteolytic products which showed immunoreactivity with an antibody against human erythrocyte spectrin. These proteolytic products were similar to those generated from erythrocyte spectrin or cultured lung tumor cells (A549 cells) incubated with purified calpain. Furthermore, incubation of alveolar type II cells with a calpain-specific inhibitor modulated the secretagogue-induced proteolysis of lung spectrin. Thus, stimulation of secretion appeared to activate endogenous calpain in type II cells, suggesting that calpain-mediated proteolysis of a submembranous cytoskeletal protein could play an important role in the secretory process.  相似文献   

9.
The complete sequence of 595 amino acids of the alpha-I domain of human erythrocyte spectrin has been determined. Peptides derived from three different protease cleavages were purified using high performance liquid chromatography and subjected to automated amino acid sequence analysis. These data along with sequences of the cyanogen bromide and large tryptic peptides (Speicher, D.W., Davis, G., Yurchenco, P.D., and Marchesi, V.T. (1983) J. Biol. Chem. 258, 14931-14937) represent most or all of the sequence of spectrin alpha-I. The single remaining ambiguity is the precise termination of the COOH terminus of the alpha-I domain. The sequence data suggest that the 595 residues presented here represent the complete sequence of the alpha-I domain, but the apparent size of the COOH-terminal CNBr fragment suggests the existence of an additional 38 residues at the end of the domain. The sequence of the alpha-I domain contains a single type of internal homology composed of multiple 106-amino acid repeats consistent with the occurrence of multiple gene duplications during the course of spectrin evolution. The only portion of the alpha-I sequence which does not appear to contain this sequence repeat is the segment containing the NH2-terminal 17 residues. This unique segment may be part of the oligomer binding site. No disulfide bonds appear to be involved in the structure of alpha-I and cysteine is not highly conserved. Calculations of secondary structure suggest the presence of short helices which fold into triple helical segments approximately 50 A in length. There is little beta sheet structure. A model of spectrin structure incorporating the repeat unit and proposed secondary structure is presented. A computer search of alpha-I sequence with the National Biomedical Research Foundation database of 2145 protein sequences did not detect any significant relationships. Spectrin is apparently the first member of a new class of proteins to be structurally characterized.  相似文献   

10.
Physicochemical properties of mixtures of spectrin and actin extracted from human erythrocyte ghosts have been correlated with ultrastructural changes observed in freeze-fractured erythrocyte membranes. (1) Extracted mixtures of spectrin and actin have a very low solubility (less than 30 mug/ml) near their isoelectric point, pH 4.8. These mixtures are also precipitated by low concentrations of Ca2+, Mg2+, polylysine or basic proteins. (2) All conditions which precipitate extracts of spectrin and actin also induce aggregation of the intramembrane particles in spectrin-depleted erythrocyte ghosts. Precipitation of the residual spectrin molecules into small patches on the cytoplasmic surface of the ghost membrane is thought to be the cause of particle aggregations, implying an association between the spectrin molecules and the intramembrane particles. (3) When fresh ghosts are exposed to conditions which precipitate extracts of spectrin and actin, only limited particle aggregation occurs. Instead, the contraction of the intact spectrin meshwork induced by the precipitation conditions compresses the lipid bilayer of the membrane, causing it to bleb off particle-free, protein-free vesicles. (4) The absence of protein in these lipid vesicles implies that all the proteins of the erythrocyte membrane are immobilized by association with either the spectrin meshwork or the intramembrane particles.  相似文献   

11.
Studies on the folding of helical proteins have shown a wide range of different mechanisms and highlighted the importance of helical propensity as a factor in determining folding mechanism. Here, we contribute to this interesting field with the protein engineering phi-value analysis of the 16th domain of chicken brain alpha-spectrin, R16. The fortuitous curvature seen in the unfolding arm of the chevron plot allows us to investigate both early and late events in folding. R16 is the first two-state helical protein for which this has been possible.  相似文献   

12.
Spectrin, an important component of the mammalian erythrocyte membrane skeleton, is a heterodimeric protein with alpha and beta subunits of 280 and 246 kDa, respectively. Spectrin-like proteins have also been demonstrated in a wide variety of nonerythroid cells. To examine the hypothesis that nonerythroid beta spectrins may be encoded by the "erythroid" beta spectrin gene, we have isolated cDNA clones from a human fetal skeletal muscle library by hybridization to a previously described red cell beta spectrin cDNA. Detailed comparison of muscle and erythroid beta spectrin cDNAs has revealed sequence identity over the majority of their lengths, confirming that they are the product of the same gene. However, there is a sharp divergence in sequence at their 3' ends. A consequence of this divergence is the replacement of the carboxyl terminus of erythroid beta spectrin with a different, longer carboxyl-terminal domain in skeletal muscle. We hypothesize that tissue-specific differential polyadenylation leads to the selective activation of a donor splice site within the beta spectrin coding sequence, splicing downstream nonerythroid exons into the mature muscle beta spectrin mRNA. We predict that replacement, in nonerythroid cells, of the beta spectrin carboxyl terminus, known to participate in spectrin self-association and phosphorylation, has significant functional consequences. These data may explain previously reported nonerythroid beta spectrin isoforms that resemble red cell beta spectrin by immunochemical analysis.  相似文献   

13.
The amitochondrial human intestinal parasite Giardia intestinalis is regarded to be the most ancient living example of single-celled eukaryotes and should display primitive features of pre-metazoan gene regulation. Characterization of E. coli clones which express Giardia antigens from plasmid vectors has revealed that an antigen is encoded by the rDNA repeat unit from the strand complementary to that encoding the rRNAs. The open reading frame (ORF) originates in the spacer region between the small (SS) and large (LS) subunit rRNA genes and terminates within the LS rRNA gene. The promoter region of this ORF has characteristics of both RNA polymerase (pol) II and pol III regulatory sequences, suggestive of gene regulation before these different promoter types evolved. The rDNA repeat unit is located on multiple chromosomal sites which are different in each isolate, although the electrophoretic karyotypes appear very stable in Giardia from both human and animal sources.  相似文献   

14.
15.
DNA lengths in the structural repeat units of Chinese hamster ovary (CHO) and chicken erythrocyte chromatin were compared by analyzing the sizes of DNA fragments produced after treatment of nuclei with staphylococcal nuclease. The repeat length of CHO chromatin (173 +- 4 BP) is about 20 base pairs (BP) smaller than that of chicken erythrocyte chromatin (194 +- 8 BP). Repeat lengths of rat liver and calf thymus chromatin were found to be about 10 BP shorter than that of chicken erythrocyte chromatin. Thus significant variations occur in repeat units of chromatin of higher eukaryotes. These variations occur in the lengths of "spacer" (or "internucleosomal") DNA segments, not in "core particle" (or "nucleosomal") DNA lengths. The concept of spacer regions and the possible influence of H1 histones is discussed.  相似文献   

16.
We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand.  相似文献   

17.
18.
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital abnormalities, cancer susceptibility, and a marked cellular hypersensitivity to DNA interstrand cross-linking agents, which correlates with a defect in ability to repair this type of damage. We have previously identified an approximately 230-kDa protein present in a nuclear protein complex in normal human lymphoblastoid cells that is involved in repair of DNA interstrand cross-links and shows reduced levels in FA-A cell nuclei. The FANCA gene appears to play a role in the stability or expression of this protein. We now show that p230 is a well known structural protein, human alpha spectrin II (alphaSpIISigma*), and that levels of alphaSpIISigma* are not only significantly reduced in FA-A cells but also in FA-B, FA-C and FA-D cells (i.e. in all FA cell lines tested), suggesting a role for these FA proteins in the stability or expression of alphaSpIISigma*. These studies also show that alphaSpIISigma* forms a complex in the nucleus with the FANCA and FANCC proteins. alphaSpIISigma* may thus act as a scaffold to align or enhance interactions between FA proteins and proteins involved in DNA repair. These results suggest that FA represents a disorder in which there is a deficiency in alphaSpIISigma*.  相似文献   

19.
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.  相似文献   

20.
Human erythrocyte spectrin was labelled with the probe 5, 5'-disulfato-1-(6-hexanoic acid N-hydroxysuccinimide ester)-1'-ethyl-3,3,3',3'-tetramethylindocarbocyanine (Cy3). Cy3-spectrin was bound to the outer surface of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and its diffusion measured by fluorescence recovery after photobleaching (FRAP). It was found that at 30 degrees C, above the lipid gel to liquid-crystalline phase transition of the lipids, Cy3-spectrin had an unexpectedly high diffusion coefficient D=(2.1+/-0.6)x10(-7)) cm2/s. At the phase transition, diffusion of Cy3-spectrin was only slightly lower; D=(1.3+/-0.3)x10(-7) cm2/s, whereas at 14 degrees C, well below the lipid phase transition, diffusion was found to be much slower with D=(3.1+/-0.12)x10(-9) cm2/s. The fast diffusion of Cy3-spectrin on the lipid surface implies that the individual bonds which bind spectrin to the lipid surface must rapidly be made and broken. In the light of these results, spectrin-lipid interactions alone appear unlikely to have any significant role in supporting the cell membrane. Probably, the interactions serve only to localise the spectrin at the inner lipid surface in order to facilitate formation of the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号