首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

2.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

3.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

4.
Question: Do severe winter flood events lift the nutrient limitation of biomass production in a river floodplain? How does this affect plant species richness? How long do the effects last? Location: Floodplain grassland on calcareous sandy loam near river Rhine in The Netherlands. Methods: Plots were fertilised with four treatments (control, N, P, N+P) for 21 years; plant species composition, vegetation biomass and tissue nutrient concentrations were determined every year between 1985 and 2005. Results: Fertilisation with N generally increased biomass production and reduced species richness, but these effects varied over time. During the first four years of the experiment, biomass production appeared to be co‐limited by N and P, while N fertilisation dramatically reduced plant species richness; these effects became weaker subsequently. Following two extreme winter floods in 1993–94 and 1994–95 and a drought in spring 1996, the effects of fertilisation disappeared between 1998 and 2001 and then appeared again. Flooding caused an overall reduction in species richness (from c. 24 to 15 species m‐2) and an increase in biomass production, which were only partly reversed after ten years. Conclusions: Long time series are necessary to understand vegetation dynamics and nutrient limitation in river floodplains, since they are influenced by occasional flood and drought events, whose effects may persist for more than ten years. A future increase in flooding frequency might be detrimental to species richness in floodplain grasslands.  相似文献   

5.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

6.
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.  相似文献   

7.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

8.
Question: Is there any effect of cutting frequency and liming on P and K availability in the soil, biomass production and plant species composition after cessation of fertilizer application? Location: Eifel Mountains, SW Germany. Methods: The long‐term Grassland Extensification and Nutrient Depletion Experiment was established on a fertilized and mown pasture (Lolio‐Cynosuretum) in 1993. Treatments were: (1) two cuts per year without liming, (2) two cuts with liming, (3) four cuts without liming, (4) four cuts with liming and (5) continued intensive mowing as the control. Results: From 1993 to 2006, the plant available P concentration in the soil decreased substantially, whereas K concentration decreased only slightly. Biomass production decreased from 7 to 5 t DM ha?1. These trends were affected by cessation of NPK fertilizer application but not by cutting frequency or liming. In 2007, substantial differences in species composition between the control and the two‐cut and four‐cut treatments were recorded, whereas liming had no effect. Higher species richness was recorded in cut treatments compared to the control, but no effects of cutting frequency or liming were observed. Ellenberg indicator values indicated that soil nutrients influenced changes in species composition only marginally. Conclusions: The decrease in productivity and available soil P and K in favor of species richness was not achieved to any greater extent by four cuts than by two cuts, or by lime application. Although species richness slightly increased, we conclude that the restoration of low productive grasslands cannot be achieved by cutting management.  相似文献   

9.
Virtanen  R.  Johnston  A.E.  Crawley  M.J.  Edwards  G.R. 《Plant Ecology》2000,151(2):129-141
The relationships between bryophyte biomass and species richness and soil pH, nutrient applications and vascular plant biomass and species richness were analyzed for the Park Grass Experiment (Rothamsted, UK). The study examined the abundance of bryophytes in relation to long-term fertilizer and lime application and to fertilizer treatments recently being ceased on some plots. The probability of bryophytes being present on a plot increased with increasing soil pH, and on plots at soil pH 3.3–4.5, the lowest values in this experiment, there were virtually no mosses present. Total bryophyte biomass decreased with increasing vascular plant biomass and vascular plant richness. Both bryophyte biomass and species richness showed a curvilinear response to soil pH. Bryophyte biomass was markedly increased on plots where nitrogen (N) fertilization had recently been ceased. The abundance of the common bryophyte species showed individualistic responses to treatments. N had a negative effect on the abundance of Brachythecium rutabulum. Increasing soil pH, and the application of phosphorus (P) and potassium (K) fertilizer together, had a positive effect on Eurhynchium praelongum. This species was also negatively affected by N, but tolerated larger amounts of it (100–150 kg ha–1 N) than B. rutabulum. An ephemeral moss, Bryum subapiculatum, had a unimodal response to soil pH but showed no response to N, P, K or other explanatory variables.  相似文献   

10.
Experiments addressing the role of plant species diversity for ecosystem functioning have recently proliferated. Most studies have focused on plant biomass responses. However, microbial processes involved in the production of N2O and the oxidation of atmospheric CH4 could potentially be affected via effects on N cycling, on soil diffusive properties (due to changes in water relations and root architecture) and by more direct interactions of plants with soil microbes. We studied ecosystem-level CH4 and N2O fluxes in experimental communities assembled from two pasture soils and from combinations of 1, 3, 6, 8 or 9 species typical for these pastures. The soils contrasted with respect to texture and fertility. N2O emissions decreased with diversity and increased in the presence of legumes. Soils were sinks for CH4 at all times; legume monocultures were a smaller sink for atmospheric CH4 than non-legume monocultures, but no effect of species richness per se was detected. However, both the exchange of CH4 and N2O strongly depended on plant community composition, and on the interaction of composition with soil type, indicating that the functional role of species and their interactions differed between soils. N2O fluxes were mainly driven by effects on soil nitrate and on nitrification while soil moisture had less of an effect. Soil microbial C and N and N mineralisation rates were not altered. The driver of the interactive soil type×plant community composition-effects was less clear. Because soil methanotrophs may take longer to respond to alterations of N cycling than the 1/2 year treatment in this study, we also tested species richness-effects in two separate 5-year field studies, but results were ambiguous, indicating complex interactions with soil disturbance. In conclusion, our study demonstrates that plant community composition can affect the soil trace gas balance, whereas plant species richness per se was less important; it also indicates a potential link between the botanical composition of plant communities and global warming.  相似文献   

11.
We studied the influence of eight nonleguminous grassland plant species belonging to two functional groups (grasses and forbs) on the composition of soil denitrifier communities in experimental microcosms over two consecutive years. Denitrifier community composition was analyzed by terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified nirK gene fragments coding for the copper-containing nitrite reductase. The impact of experimental factors (plant functional group, plant species, sampling time, and interactions between them) on the structure of soil denitrifier communities (i.e., T-RFLP patterns) was analyzed by canonical correspondence analysis. While the functional group of a plant did not affect nirK-type denitrifier communities, plant species identity did influence their composition. This effect changed with sampling time, indicating community changes due to seasonal conditions and a development of the plants in the microcosms. Differences in total soil nitrogen and carbon, soil pH, and root biomass were observed at the end of the experiment. However, statistical analysis revealed that the plants affected the nirK-type denitrifier community composition directly, e.g., through root exudates. Assignment of abundant T-RFs to cloned nirK sequences from the soil and subsequent phylogenetic analysis indicated a dominance of yet-unknown nirK genotypes and of genes related to nirK from denitrifiers of the order Rhizobiales. In conclusion, individual species of nonleguminous plants directly influenced the composition of denitrifier communities in soil, but environmental conditions had additional significant effects.  相似文献   

12.
In grazed semiarid steppe ecosystems, much attention has been paid to aspects of growth limitation by water. So far, potential limitation of primary production by plant nutrients was rarely considered. This knowledge is essential for identification of sustainable land-use practices in these large and important ecosystems on the background of over-exploitation and climate change. In the present study plant nutrient concentrations and ratios were investigated with factorial additions of water and N fertilizer at two sites with contrasting soil nutrient availability. Combined analysis of nutrient concentrations, contents, biomass production, and plant N:P ratios consistently confirmed primary growth limitation by water and a strong N limitation when sufficient amounts of water were supplied. P limitation only occurred at the site with low P availability when in addition to the natural supply, water and N fertilizer were given. According to reported thresholds of N:K and K:P ratios, K was not limiting in any plot. The observed nutritional patterns in the plant community were related to the dynamics of species composition and their specific nutrient status. Stipa grandis had the highest N:P ratio whereas Artemisia frigida showed lowest N:P. These nutrient characteristics were related to growth strategies of dominant species. Accordingly, the relative biomass contribution of S. grandis and A. frigida strongly affected the nutrient status of the plant community. Plant N:P ratios indicate the relative limitation by N or P in the semiarid grasslands under sufficient water supply, but other methods of nutritional diagnosis should be used when plant N:P ratios remain below critical values.  相似文献   

13.
The Rengen Grassland Experiment (RGE) was established in the Eifel Mountains (Germany) on a low productive Nardetum in 1941. Since then, the following fertilizer treatments have been applied with a late two-cut system: unfertilized control, Ca, CaN, CaNP, CaNPKCl and CaNPK2SO4. We aimed to understand how concentrations of macro (N, P, K, Ca and Mg), micro (Cu, Fe, Mn and Zn) and trace (As, Cd, Cr, Ni and Pb) elements in the plant biomass were affected by long-term fertilizer application, soil chemical properties and biomass production. In 2008, biomass samples from the first cut (early July) and the second cut (mid-October) were collected and analyzed. The simultaneous application of N, P and K decreased nitrogen concentration in the aboveground biomass, but substantially increased biomass production. Late cutting management decreased forage quality in highly productive more than in low productive plant communities. The concentrations of P and K in the plant biomass were positively related to P and K application and, therefore, to plant available P and K concentrations in the soil. The concentrations of some micro (Fe, Mn and Zn) and trace (As, Cd, Cr, Ni and Pb) elements in the plant biomass were negatively correlated with the amount of elements supplied by fertilizers and biomass production, probably because of the dilution effect. Long-term fertilizer application resulted in the accumulation of macro (P, Ca and Mg), micro (Fe and Mn) and trace (As and Cr) elements in the soil, but in many cases this accumulation was not connected with an increase in the concentrations of these elements in the plant biomass. Nutritional status, as indicated by the biomass N:P ratio, was consistent with N or P limitation as indicated by the nitrogen and phosphorus nutrition indices. Furthermore, additional K (co-)limitation was indicated by the N:K and K:P ratios in the biomass from the NP treatment. The results from the RGE indicate that there is no simple positive relationship between the applied elements and their concentrations in the plant biomass.  相似文献   

14.
Space requirements by winter sports and accelerating global warming are usually perceived as stressors for mountain meadow plant communities. Cross-country ski track preparation (i.e. grooming), however, might retard effects of climate change and, being limited in space requirements, might increase abiotic heterogeneity. The effect of cross-country ski tracks on meadow vegetation was quantified along a representative ski track that had been operated for 30 years in the Fichtelgebirge, a low mountain range in central Europe. Paired sampling was implemented to assess the effect of skiing operations on snow and soil properties, plant phenology, biomass production and species composition. Additionally, boosted regression tree analyses were used to quantify the relative importance of the cross-country ski track compared to other environmental conditions.The cross-country ski track strongly increased snow density, enhanced soil frost, and retarded snowmelt, thereby delaying flower phenology (by 2.1 days) and the early development stages of plant species on the track. However, biomass, species richness and species composition were unaffected by skiing operations except for one species (Leontodon autumnalis) showing exclusive occurrence on the track while four others showed reduced relative occurrence on the track.While snow and soil properties were influenced by cross-country ski track preparation, natural environmental variability was more influential for species composition and biomass production than the ski track. We therefore conclude that the ski track – without artificial snow – did not negatively affect species composition. By delaying flower phenology, effects of the ski track even counteracted global warming to some degree. Due to their small spatial extent in the landscape, these ski tracks may add to environmental heterogeneity and thus support sustaining diverse species compositions during environmental changes.  相似文献   

15.
Physical soil disturbance and the hydrology of temporary pools affect the biomass, species composition and richness of plant communities. Disturbance liberates sites for the random recruitment of new individuals. The addition of seeds modifies the structure of the communities. In order to verify these hypotheses concerning the vegetation of temporary pools, an experiment was carried out using 72 soil samples collected from a pool in Western Morocco and placed in containers. Three types of laboratory treatments were applied, each combined with control treatments: soil disturbance (control/disturbed), hydrology (flooded, saturated and dry) and seed addition (sowing/no sowing). The total biomass, the annual and perennial species richness were calculated for each sample to test the effects of disturbance, hydrology and seed addition on the biomass and species richness of the various plant communities. The results show that disturbance reduces the total biomass, especially of perennials, but without significantly increasing the richness of annuals. Seed addition does not affect the total biomass and reduces total richness only in saturated soil, where biomass production is high. The most extreme stress conditions (drought and flooding) limit the abundance of species and therefore competition. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

16.
This study aims to explore relationships between plant diversity and soil microbial function and the factors that mediate the relationships. Artificial plant communities (1, 2, 4 and 8 species) were established filled with natural and mine tailing soils, respectively. After 12 months, the plant species richness positively affected the soil microbial functional diversity in both soil environments but negatively affected microbial biomass and soil basal respiration in the natural soil. The root biomass positively correlated with the microbial biomass, cultural bacterial activity and soil basal respiration in both soil environments. Moreover, the Di (deviations between observed performances and expected performances from the monoculture performance of each species of mixture) of microbial biomass, cultural bacterial activity and soil basal respiration positively correlated with the Di of root biomass in both soil environments. Consistent with stress-gradient hypothesis, the Dmix (over-function index) of aboveground biomass positively correlated plant species richness in the mine tailing soil. Results suggest that the root biomass production is an important mechanism that affects the effects of plant diversity on soil microbial functions. Different responses of soil microbial function to increasing plant diversity may be due to root biomass production mediated by other factors.  相似文献   

17.
Species mixing boosts root yield in mangrove trees   总被引:1,自引:0,他引:1  
Enhanced species richness can stimulate the productivity of plant communities; however, its effect on the belowground production of forests has scarcely been tested, despite the role of tree roots in carbon storage and ecosystem processes. Therefore, we tested for the effects of tree species richness on mangrove root biomass: thirty-two 6 m by 6 m plots were planted with zero (control), one, two or three species treatments of six-month-old Avicennia marina (A), Bruguiera gymnorrhiza (B) and Ceriops tagal (C). A monoculture of each species and the four possible combinations of the three species were used, with four replicate plots per treatment. Above- and belowground biomass was measured after three and four years’ growth. In both years, the all-species mix (ABC) had significant overyielding of roots, suggesting complementarity mediated by differences in rhizosphere use amongst species. In year four, there was higher belowground than aboveground biomass in all but one treatment. Belowground biomass was strongly influenced by the presence of the most vigorously growing species, A. marina. These results demonstrate the potential for complementarity between fast- and slow-growing species to enhance belowground growth in mangrove forests, with implications for forest productivity and the potential for belowground carbon sequestration.  相似文献   

18.
Studies conducted in terrestrial ecosystems have shown that increasing plant diversity enhances ecosystem processes such as primary production. In marine systems, knowledge of how plant diversity influences ecosystem processes and higher trophic levels is still limited. To examine how plant richness and composition influence recruitment and colonization processes, defaunated eelgrass (Zostera marina), sago pondweed (Potamogeton pectinatus) and perfoliate pondweed (Potamogeton perfoliatus) were planted on an unvegetated, sandy bottom in all possible combinations in July and August. Both field experiments lasted 1 week. Our results showed that in these plant assemblages plant richness had a negative effect on faunal diversity (H′) and evenness (J′), while total abundance showed strong temporal variation with weak, positive relationships with plant species richness in both August and July. Plant species composition had strong effects on amphipods (Gammarus spp.), thus both the abundance and biomass were higher in treatments containing P. perfoliatus. The colonization process was significantly influenced by the numerical dominance of a few faunal species, e.g. the settlement of lagoon cockles (Cerastoderma glaucum), and by the timing of the experiments. The results indicate that faunal colonization in these communities is rapid and significantly influenced by the traits of particular plant species.  相似文献   

19.
Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.  相似文献   

20.
Spehn  Eva M.  Joshi  Jasmin  Schmid  Bernhard  Alphei  Jörn  Körner  Christian 《Plant and Soil》2000,224(2):217-230
The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号