首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and AimsThe three relict genera Pherosphaera, Microcachrys and Saxegothaea in Podocarpaceae produce quite distinct seed cone types in comparison with other genera and do not form a clade along with Acmopyle. The detailed seed cone morpho-anatomy of these three relict genera and affinities with other podocarps are poorly known. This study aims to understand the seed cone morpho-anatomy and affinities among these three disjunct relict genera and with other podocarps.MethodsWe comparatively analysed the seed cone morpho-anatomical traits of the three podocarps genera and used ancestral state reconstruction to understand the evolution of these traits.Key ResultsWe described the seed cone morpho-anatomical structures of the three relict genera in detail. The three genera produce aggregated multiovulate cones. Both Microcachrys and Saxegothaea have an asymmetrical free cup-like epimatium. Both species of Pherosphaera lack an epimatium. The ancestral state reconstruction implies that the presence of an epimatium is an ancestral trait in podocarps and is independently lost in Pherosphaera and Phyllocladus. The seed cones are fleshy in Microcachrys and non-fleshy in Saxegothaea and Pherosphaera. The seed cone macrofossils of both extinct and living podocarps also show the presence of an epimatium and fleshiness in podocarps.ConclusionsAltogether, the morpho-anatomy suggests that Pherosphaera, Microcachrys and Saxegothaea present affinities with each other and other podocarps, but the reconstruction of the ancestral seed cone in Podcarpaceae is quite complex due to multiple convergent evolutions of several structures. These structures (e.g. epimatium, aril and receptaculum) are of low taxonomic value but of great evolutionary and ecological significance, and are responsive adaptations to ever-changing environmental conditions.  相似文献   

2.
Recent systematic studies ofBartsia andOdontites showed the necessity to exclude the closely related perennial speciesBartsia aspera (Portugal and northern Morocco) andBartsia spicata (Central Pyrenees) from the genusBartsia as a segregate genus namedNothobartsia. Morphologically this new genus combines characteristic features ofBartsia and ofOdontites. Its autonomous systematic position is supported by the cladistic analysis, showing thatNothobartsia represents a relatively primitive genus standing close to the common ancestral root ofBartsia, Euphrasia, andOdontites.  相似文献   

3.
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.  相似文献   

4.
Background and AimsThe gymnosperm order Cycadales is pivotal to our understanding of seed-plant phylogeny because of its phylogenetic placement close to the root node of extant spermatophytes and its combination of both derived and plesiomorphic character states. Although widely considered a ‘living fossil’ group, extant cycads display a high degree of morphological and anatomical variation. We investigate stomatal development in Zamiaceae to evaluate variation within the order and homologies between cycads and other seed plants.MethodsLeaflets of seven species across five genera representing all major clades of Zamiaceae were examined at various stages of development using light microscopy and confocal microscopy.Key ResultsAll genera examined have lateral subsidiary cells of perigenous origin that differ from other pavement cells in mature leaflets and could have a role in stomatal physiology. Early epidermal patterning in a ‘quartet’ arrangement occurs in Ceratozamia, Zamia and Stangeria. Distal encircling cells, which are sclerified at maturity, are present in all genera except Bowenia, which shows relatively rapid elongation and differentiation of the pavement cells during leaflet development.ConclusionsStomatal structure and development in Zamiaceae highlights some traits that are plesiomorphic in seed plants, including the presence of perigenous encircling subsidiary cells, and reveals a clear difference between the developmental trajectories of cycads and Bennettitales. Our study also shows an unexpected degree of variation among subclades in the family, potentially linked to differences in leaflet development and suggesting convergent evolution in cycads.  相似文献   

5.

Background

How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera.

Results

Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories.

Conclusion

The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.  相似文献   

6.
The eusporangiate marattialean ferns represent an ancient radiation with a rich fossil record but limited modern diversity in the tropics. The long evolutionary history without close extant relatives has confounded studies of the phylogenetic origin, rooting and timing of marattialean ferns. Here we present new complete plastid genomes of six marattialean species and compiled a plastid genome dataset representing all of the currently accepted marattialean genera. We further supplemented this dataset by compiling a large dataset of mitochondrial genes and a phenotypic data matrix covering both extant and extinct representatives of the lineage. Our phylogenomic and total-evidence analyses corroborated the postulated position of marattialean ferns as the sister to leptosporangiate ferns, and the position of Danaea as the sister to the remaining extant marattialean genera. However, our results provide new evidence that Christensenia is sister to Marattia and that M. cicutifolia actually belongs to Eupodium. The apparently highly reduced rate of molecular evolution in marattialean ferns provides a challenge for dating the key phylogenetic events with molecular clock approaches. We instead applied a parsimony-based total-evidence dating approach, which suggested a Triassic age for the extant crown group. The modern distribution can best be explained as mainly resulting from vicariance following the breakup of Pangaea and Gondwana. We resolved the fossil genera Marattiopsis, Danaeopsis and Qasimia as members of the monophyletic family Marattiaceae, and the Carboniferous genera Sydneia and Radstockia as the monophyletic sister of all other marattialean ferns.  相似文献   

7.
The viviparous sea snakes (Hydrophiinae: Hydrophiini) comprise a young but morphologically and ecologically diverse clade distributed throughout the Indo-Pacific. Despite presenting a very promising model for marine diversification studies, many relationships among the 62 species and 16 genera in Hydrophiini remain unresolved. Here, we extend previous taxonomic and genomic sampling for Hydrophiini using three mitochondrial fragments and five nuclear loci for multiple individuals of 39 species in 15 genera. Our results highlight many of the impediments to inferring phylogenies in recent rapid radiations, including low variation at all five nuclear markers, and conflicting relationships supported by mitochondrial and nuclear trees. However, concatenated Bayesian and likelihood analyses, and a multilocus coalescent tree, recovered concordant support for primary clades and several previously unresolved inter-specific groupings. The Aipysurus group is monophyletic, with egg-eating specialists forming separate, early-diverging lineages. All three monotypic semi-aquatic genera (Ephalophis, Parahydrophis and Hydrelaps) are robustly placed as early diverging lineages along the branch leading to the Hydrophis group, with Ephalophis recovered as sister to Parahydrophis. The molecular phylogeny implies extensive evolutionary convergence in feeding adaptations within the Hydrophis group, especially the repeated evolution of small-headed (microcephalic) forms. Microcephalophis (Hydrophis) gracilis is robustly recovered as a relatively distant sister lineage to all other sampled Hydrophis group species, here termed the ‘core Hydrophis group’. Within the ‘core Hydrophis group’, Hydrophis is recovered as broadly paraphyletic, with several other genera nested within it (Pelamis, Enhydrina, Astrotia, Thalassophina, Acalyptophis, Kerilia, Lapemis, Disteira). Instead of erecting multiple new genera, we recommend dismantling the latter (mostly monotypic) genera and recognising a single genus, Hydrophis Latreille 1802, for the core Hydrophis group. Estimated divergence times suggest that all Hydrophiini last shared a common ancestor ~6 million years ago, but that the majority of extant lineages diversified over the last ~3.5 million years. The core Hydrophis group is a young and rapidly speciating clade, with 26 sampled species and 9 genera and dated at only ~1.5–3 million years old.  相似文献   

8.
Recent phylogenetic analyses imply a distant relationship and long separated evolution of two-toed sloths (Choloepus) and three-toed sloths (Bradypus). No known fossil sloth is interpreted to have been suspensory. As a consequence, the suspensory posture and locomotion of the extant genera likely evolved convergently in both lineages, forming a new framework for the analysis of functional aspects of the locomotor apparatus of extant tree sloths. The suspensory posture and locomotion has altered functional demands from the phylogenetically plesiomorphic non-suspensory pronograde situation. Here, anatomical traits that have been argued to be of adaptive significance for quadrupedal suspensory locomotion are reviewed and the evolution of these traits is discussed in light of the new framework. Experimental data are largely limited to Choloepus, but help to deduce functional aspects of the anatomy in Bradypus as well. The most important adaptive traits are hands and feet modified into relatively rigid hook-like appendages, great mobility of all joints proximal to the midcarpal and transverse tarsal joints, relatively long arms with a relatively short scapula, a rounded thorax with a small diameter, a highly mobile sterno-clavicular articulation, and emphasis on powerful flexion in the proximal limb joints via advantageous lever arms. Despite these changes, patterns of limb kinematics remained conservative during the course of evolution in the lineages leading to extant tree sloths, and it is suggested here that this also applies to the pattern of neuromuscular control of limb movements during locomotion. Morphological ‘solutions’ to altered functional demands posed by inversed orientation of the body differ in the two genera of extant tree sloths, thereby corroborating the proposed diphyly. Convergent evolution in tree sloths may be attributed to functional constraints posed by fossorial adaptations in early Xenarthra that canalized sloths to adopt a suspensory posture and locomotion in the arboreal habitat.  相似文献   

9.
The scant fossil record of caecilians has obscured the origin and evolution of this lissamphibian group. Eocaecilia micropodia from the Lower Jurassic of North America remains the only stem-group caecilian with an almost complete skull preserved. However, this taxon has been controversial, engendering re-evaluation of traits considered to be plesiomorphic for extant caecilians. Both the validity of the placement of E. micropodia as a stem caecilian and estimates of the plesiomorphic condition of extant caecilians have been questioned. In order to address these issues, the braincase of E. micropodia was examined via micro-computed tomography. The braincase is considered to be a more reliable phylogenetic indicator than peripheral regions of the skull. These data reveal significant new information, including the possession of an ossified nasal septum, ossified anterior wall of the sphenethmoid, long anterolateral processes on the sphenethmoid, and paired olfactory nerve foramina, which are known only to occur in extant caecilians; the latter are possibly related to the evolution of the tentacle, a caecilian autapomorphy. A phylogenetic analysis that included 64 non-amniote taxa and 308 characters represents the first extensive test of the phylogenetic affinities of E. micropodia. The results place E. micropodia securely on the stem of extant caecilians, representing a clade within Temnospondyli that is the sister taxon to batrachians plus Gerobatrachus. Ancestral character state reconstruction confirms the braincase of E. micropodia to be largely representative of the plesiomorphic condition of extant caecilians. Additionally, the results refine the context within which the evolution of the caecilian form can be evaluated. The robust construction and pattern of the dermal skull of E. micropodia is interpreted as symplesiomorphic with advanced dissorophoid temnospondyls, rather than being autapomorphic in its robust construction. Together these data increase confidence in incorporating E. micropodia into discussions of caecilian evolution.  相似文献   

10.
Species in the ivesioid clade of Potentilla (Rosaceae) are endemic to western North America, an area that underwent widespread aridification during the global temperature decrease following the Mid-Miocene Climatic Optimum. Several morphological features interpreted as adaptations to drought are found in the clade, and many species occupy extremely dry habitats. Recent phylogenetic analyses have shown that the sister group of this clade is Potentilla section Rivales, a group with distinct moist habitat preferences. This has led to the hypothesis that the ivesioids (genera Ivesia, Horkelia and Horkeliella) diversified in response to the late Tertiary aridification of western North America. We used phyloclimatic modeling and a fossil-calibrated dated phylogeny of the family Rosaceae to investigate the evolution of the ivesioid clade. We have combined occurrence- and climate data from extant species, and used ancestral state reconstruction to model past climate preferences. These models have been projected into paleo-climatic scenarios in order to identify areas where the ivesioids may have occurred. Our analysis suggests a split between the ivesioids and Potentilla sect. Rivales around Late Oligocene/Early Miocene (∼23 million years ago, Ma), and that the ivesioids then diversified at a time when summer drought started to appear in the region. The clade is inferred to have originated on the western slopes of the Rocky Mountains from where a westward range expansion to the Sierra Nevada and the coast of California took place between ∼12-2 Ma. Our results support the idea that climatic changes in southwestern North America have played an important role in the evolution of the local flora, by means of in situ adaptation followed by diversification.  相似文献   

11.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

12.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

13.
Molecular phylogenies and estimates of divergence times within the sister genera Macaranga and Mallotus were estimated using Bayesian relaxed clock analyses of two generic data sets, one per genus. Both data sets were based on different molecular markers and largely different samples. Per genus three calibration points were utilised. The basal calibration point (crown node of all taxa used) was taken from literature and used for both taxa. The other three calibrations were based on fossils of which two were used per genus. We compared patterns of dispersal and diversification in Macaranga and Mallotus using ancestral area reconstruction in RASP (S-DIVA option) and contrasted our results with biogeographical and geological records to assess accuracy of inferred age estimates. A check of the fossil calibration point showed that the Japanese fossil, used for dating the divergence of Mallotus, probably had to be attached to a lower node, the stem node of all pioneer species, but even then the divergence time was still younger than the estimated age of the fossil. The African (only used in the Macaranga data set) and New Zealand fossils (used for both genera) seemed reliably placed. Our results are in line with existing geological data and the presence of stepping stones that provided dispersal pathways from Borneo to New Guinea-Australia, from Borneo to mainland Asia and additionally at least once to Africa and Madagascar via land and back to India via Indian Ocean island chains. The two genera show congruence in dispersal patterns, which corroborate divergence time estimates, although the overall mode and tempo of dispersal and diversification differ significantly as shown by distribution patterns of extant species.  相似文献   

14.
Summary Fruiting and seed set in two bumblebee-pollinated herbs, Melampyrum pratense L. (annual, Scrophulariaceae) and Viscaria vulgaris Bernh. (perennial, Caryophyllaceae) were studied on a dry meadow in southwestern Sweden in June 1986 and 1988. Both species produced seeds by self-fertilization. In Melampyrum (homogamous) fruiting and seed set by selfing were much lower than by natural pollination; in Viscaria (protandrous) fruiting by selfing and by natural polination were similar, but seed set per flower was lower by selfing than by natural pollination. Sequential hand pollinations increased seed set in Melampyrum, but not in Viscaria. Thus, the number of pollinations is important for high seed set in Melampyrum, and number of pollen grains deposited one pollination is important for high seed set in Viscaria. Late flowering resulted in the production of fewer seeds in both species, although the visitation rate in pure Viscaria stands was sufficient, because of limited resources. Pollen was the limiting resource in Viscaria, because hand pollination increased natural seed set. In Melampyrum pollen was limiting in 1988 but so were consumable resources, because the seedset decreased with time despite hand pollination. Pure stands of Viscaria had sced set similar to plants in mixed stands (with Melampyrum and Rhinanthus), although plants in mixed stands received fewer visits. Many seeds produced late in the season are the result of self pollination; emasculated Viscaria flowers had a very low seedset late in the season. Pollen loads containing approximately 50% heterospecific grains did not affect seed set in either species. Application of heterospecific (Lupinus) pollen to receptive Viscaria styles 6 h before conspecific pollen did not affect seed set.  相似文献   

15.

Background

The Aerides–Vanda alliance is a complex group in the subtribe Aeridinae (subfamily Epidendroideae, Orchidaceae). Some phylogenetic systems of this alliance have been previously proposed based on molecular and morphological analyses. However, several taxonomic problems within this alliance as well as between it and its allies remain unsolved.

Methodology/Principal Findings

We utilized ITS and five plastid DNA regions in this phylogenetic analysis. Consensus trees strongly indicate that the Aerides–Vanda alliance is monophyletic, and the 14 genera of this alliance can be grouped into the following clades with 14 subclades: 1. Aerides, comprising two subclades: Rhynchostylis and Aerides; 2. Ascocentropsis; 3. Papilionanthe; 4. Vanda, comprising five subclades: Neofinetia, Christensonia, Seidenfadenia, Ascocentrum, and Vanda–Trudelia, in which Vanda and Trudelia form a subclade; 5. Tsiorchis, comprising three subclades: Chenorchis, Tsiorchis, and two species of Ascocentrum; 6. Paraholcoglossum; and 7. Holcoglossum. Among the 14 genera, only Ascocentrum is triphyletic: two species of the Ascocentrum subclade, an independent subclade Ascocentrum subclade in the Tsiorchis clade; the Ascocentrum subclade in the Vanda clade; and one species in the Holcoglossum clade. The Vanda and Trudelia species belong to the same subclade. The molecular conclusion is consistent with their morphological characteristics.

Conclusions

We elucidate the relationship among the 14 genera of the Aerides–Vanda alliance. Our phylogenetic results reveal that the Aerides–Vanda alliance is monophyletic, but it can be divided into 14 genera. The data prove that Ascocentrum is triphyletic. Plants with elongate-terete leaves and small flowers should be treated as a new genus, Pendulorchis. Saccolabium himalaicum (Ascocentrum himalaicum) should be transferred to Pendulorchis. Ascocentrum pumilum, endemic to Taiwan, should be transferred to Holcoglossum. A new combination, Holcoglossum pumilum, was also established. Trudelia should not be recognized as an independent genus. Two new species, Pendulorchis gaoligongensis and Holcoglossum singchianum, were described as well.  相似文献   

16.
The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surface-feeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combinations in a simulated pond water environment. After 8 weeks the virulence of the 384 evolved clones were quantified with fruit fly Drosophila melanogaster oral infection model, and several other life-history traits were measured. We found that in comparison to ancestor bacteria, evolutionary treatments reduced the virulence in most of the treatments, but this reduction was not clearly related to any changes in other life-history traits. This suggests that virulence traits do not evolve in close relation with these life-history traits, or that different traits might link to virulence in different selective environments, for example via resource allocation trade-offs.  相似文献   

17.
18.
The maximum per capita rate of population growth, r, is a central measure of population biology. However, researchers can only directly calculate r when adequate time series, life tables and similar datasets are available. We instead view r as an evolvable, synthetic life-history trait and use comparative phylogenetic approaches to predict r for poorly known species. Combining molecular phylogenies, life-history trait data and stochastic macroevolutionary models, we predicted r for mammals of the Caniformia and Cervidae. Cross-validation analyses demonstrated that, even with sparse life-history data, comparative methods estimated r well and outperformed models based on body mass. Values of r predicted via comparative methods were in strong rank agreement with observed values and reduced mean prediction errors by approximately 68 per cent compared with two null models. We demonstrate the utility of our method by estimating r for 102 extant species in these mammal groups with unknown life-history traits.  相似文献   

19.
Many genera closest to the family Comamonadaceae have not been classified into any family; moreover, some of them are not monophyletic groups beyond the genus level. To resolve the taxonomic uncertainty of the closest-to-Comamonadaceae (CTC) group, we performed 16S rRNA gene- and genome-based phylogenetic analyses combined with genome relatedness indices and phenotypic traits comparison. Phylogenies based on the 16S rRNA gene and genome sequences demonstrated that the CTC group formed a coherent and robust monophyletic lineage and was sister to the family Comamonadaceae, thereby proposing the CTC group as a novel family, Sphaerotilaceae fam. nov. The resolved genus- and species-level taxonomic relationships of this new family were then validated by the phylogenomic reconstruction and comparisons of genome relatedness indices including digital DNA-DNA hybridization and average nucleotide identity (ANI) as well as comprehensive phenotypic analysis for type strains. Finally, we reclassified all misidentified genera and species, resulting in 19 new combinations, and proposed Sphaerotilaceae-specific thresholds of ANI and average amino acid identity for genus delineation. Collectively, this study has established a sound taxonomic framework of the novel family Sphaerotilaceae and will help guide future taxonomic efforts and prevent the propagation of taxonomic errors.  相似文献   

20.
A new sterculiaceous wood, Triplochitioxylon oregonensis gen. et sp. n., was collected from a Middle Eocene locality in the Clarno Formation of Oregon. Anatomical data indicate a close natural relationship between T. oregonensis and the living species of Triplochiton, a genus endemic to tropical Africa. The fossil is believed to represent a population of the group or complex from which Triplochiton evolved. The basic differences in the xylem organizations of the two genera are explained by a significant reduction of fusiform initial length and by a complete suppression of post-cambial parenchyma strand elongation in the extant genus. Paleobotanical and biogeographical evidence suggest that the xylem evolution has been strongly influenced by the increasing aridity of the African continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号